This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oduval.d | ⊢ 𝐷 = ( ODual ‘ 𝑂 ) | |
| oduval.l | ⊢ ≤ = ( le ‘ 𝑂 ) | ||
| Assertion | oduval | ⊢ 𝐷 = ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ≤ 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oduval.d | ⊢ 𝐷 = ( ODual ‘ 𝑂 ) | |
| 2 | oduval.l | ⊢ ≤ = ( le ‘ 𝑂 ) | |
| 3 | id | ⊢ ( 𝑎 = 𝑂 → 𝑎 = 𝑂 ) | |
| 4 | fveq2 | ⊢ ( 𝑎 = 𝑂 → ( le ‘ 𝑎 ) = ( le ‘ 𝑂 ) ) | |
| 5 | 4 | cnveqd | ⊢ ( 𝑎 = 𝑂 → ◡ ( le ‘ 𝑎 ) = ◡ ( le ‘ 𝑂 ) ) |
| 6 | 5 | opeq2d | ⊢ ( 𝑎 = 𝑂 → 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑎 ) 〉 = 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) |
| 7 | 3 6 | oveq12d | ⊢ ( 𝑎 = 𝑂 → ( 𝑎 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑎 ) 〉 ) = ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) ) |
| 8 | df-odu | ⊢ ODual = ( 𝑎 ∈ V ↦ ( 𝑎 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑎 ) 〉 ) ) | |
| 9 | ovex | ⊢ ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) ∈ V | |
| 10 | 7 8 9 | fvmpt | ⊢ ( 𝑂 ∈ V → ( ODual ‘ 𝑂 ) = ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) ) |
| 11 | fvprc | ⊢ ( ¬ 𝑂 ∈ V → ( ODual ‘ 𝑂 ) = ∅ ) | |
| 12 | reldmsets | ⊢ Rel dom sSet | |
| 13 | 12 | ovprc1 | ⊢ ( ¬ 𝑂 ∈ V → ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) = ∅ ) |
| 14 | 11 13 | eqtr4d | ⊢ ( ¬ 𝑂 ∈ V → ( ODual ‘ 𝑂 ) = ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) ) |
| 15 | 10 14 | pm2.61i | ⊢ ( ODual ‘ 𝑂 ) = ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) |
| 16 | 2 | cnveqi | ⊢ ◡ ≤ = ◡ ( le ‘ 𝑂 ) |
| 17 | 16 | opeq2i | ⊢ 〈 ( le ‘ ndx ) , ◡ ≤ 〉 = 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 |
| 18 | 17 | oveq2i | ⊢ ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ≤ 〉 ) = ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) |
| 19 | 15 1 18 | 3eqtr4i | ⊢ 𝐷 = ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ≤ 〉 ) |