This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oduval.d | |- D = ( ODual ` O ) |
|
| oduval.l | |- .<_ = ( le ` O ) |
||
| Assertion | oduleval | |- `' .<_ = ( le ` D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oduval.d | |- D = ( ODual ` O ) |
|
| 2 | oduval.l | |- .<_ = ( le ` O ) |
|
| 3 | fvex | |- ( le ` O ) e. _V |
|
| 4 | 3 | cnvex | |- `' ( le ` O ) e. _V |
| 5 | pleid | |- le = Slot ( le ` ndx ) |
|
| 6 | 5 | setsid | |- ( ( O e. _V /\ `' ( le ` O ) e. _V ) -> `' ( le ` O ) = ( le ` ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) ) ) |
| 7 | 4 6 | mpan2 | |- ( O e. _V -> `' ( le ` O ) = ( le ` ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) ) ) |
| 8 | 5 | str0 | |- (/) = ( le ` (/) ) |
| 9 | fvprc | |- ( -. O e. _V -> ( le ` O ) = (/) ) |
|
| 10 | 9 | cnveqd | |- ( -. O e. _V -> `' ( le ` O ) = `' (/) ) |
| 11 | cnv0 | |- `' (/) = (/) |
|
| 12 | 10 11 | eqtrdi | |- ( -. O e. _V -> `' ( le ` O ) = (/) ) |
| 13 | reldmsets | |- Rel dom sSet |
|
| 14 | 13 | ovprc1 | |- ( -. O e. _V -> ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) = (/) ) |
| 15 | 14 | fveq2d | |- ( -. O e. _V -> ( le ` ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) ) = ( le ` (/) ) ) |
| 16 | 8 12 15 | 3eqtr4a | |- ( -. O e. _V -> `' ( le ` O ) = ( le ` ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) ) ) |
| 17 | 7 16 | pm2.61i | |- `' ( le ` O ) = ( le ` ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) ) |
| 18 | 2 | cnveqi | |- `' .<_ = `' ( le ` O ) |
| 19 | eqid | |- ( le ` O ) = ( le ` O ) |
|
| 20 | 1 19 | oduval | |- D = ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) |
| 21 | 20 | fveq2i | |- ( le ` D ) = ( le ` ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) ) |
| 22 | 17 18 21 | 3eqtr4i | |- `' .<_ = ( le ` D ) |