This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shorter proof of odfval using ax-rep . (Contributed by Mario Carneiro, 13-Jul-2014) (Revised by AV, 5-Oct-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odval.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odval.2 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odval.3 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| odval.4 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| Assertion | odfvalALT | ⊢ 𝑂 = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odval.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odval.2 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | odval.3 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | odval.4 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 5 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝑋 ) |
| 7 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( .g ‘ 𝑔 ) = ( .g ‘ 𝐺 ) ) | |
| 8 | 7 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( .g ‘ 𝑔 ) = · ) |
| 9 | 8 | oveqd | ⊢ ( 𝑔 = 𝐺 → ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 𝑦 · 𝑥 ) ) |
| 10 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( 0g ‘ 𝑔 ) = ( 0g ‘ 𝐺 ) ) | |
| 11 | 10 3 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( 0g ‘ 𝑔 ) = 0 ) |
| 12 | 9 11 | eqeq12d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ↔ ( 𝑦 · 𝑥 ) = 0 ) ) |
| 13 | 12 | rabbidv | ⊢ ( 𝑔 = 𝐺 → { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ) |
| 14 | 13 | csbeq1d | ⊢ ( 𝑔 = 𝐺 → ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |
| 15 | 6 14 | mpteq12dv | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
| 16 | df-od | ⊢ od = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) | |
| 17 | 15 16 1 | mptfvmpt | ⊢ ( 𝐺 ∈ V → ( od ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
| 18 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( od ‘ 𝐺 ) = ∅ ) | |
| 19 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( Base ‘ 𝐺 ) = ∅ ) | |
| 20 | 1 19 | eqtrid | ⊢ ( ¬ 𝐺 ∈ V → 𝑋 = ∅ ) |
| 21 | 20 | mpteq1d | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ( 𝑥 ∈ ∅ ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
| 22 | mpt0 | ⊢ ( 𝑥 ∈ ∅ ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ∅ | |
| 23 | 21 22 | eqtrdi | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ∅ ) |
| 24 | 18 23 | eqtr4d | ⊢ ( ¬ 𝐺 ∈ V → ( od ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
| 25 | 17 24 | pm2.61i | ⊢ ( od ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |
| 26 | 4 25 | eqtri | ⊢ 𝑂 = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |