This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the order function. For a shorter proof using ax-rep , see odfvalALT . (Contributed by Mario Carneiro, 13-Jul-2014) (Revised by AV, 5-Oct-2020) Remove dependency on ax-rep . (Revised by Rohan Ridenour, 17-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odval.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odval.2 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odval.3 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| odval.4 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| Assertion | odfval | ⊢ 𝑂 = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odval.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odval.2 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | odval.3 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | odval.4 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 5 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝑋 ) |
| 7 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( .g ‘ 𝑔 ) = ( .g ‘ 𝐺 ) ) | |
| 8 | 7 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( .g ‘ 𝑔 ) = · ) |
| 9 | 8 | oveqd | ⊢ ( 𝑔 = 𝐺 → ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 𝑦 · 𝑥 ) ) |
| 10 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( 0g ‘ 𝑔 ) = ( 0g ‘ 𝐺 ) ) | |
| 11 | 10 3 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( 0g ‘ 𝑔 ) = 0 ) |
| 12 | 9 11 | eqeq12d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ↔ ( 𝑦 · 𝑥 ) = 0 ) ) |
| 13 | 12 | rabbidv | ⊢ ( 𝑔 = 𝐺 → { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ) |
| 14 | 13 | csbeq1d | ⊢ ( 𝑔 = 𝐺 → ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |
| 15 | 6 14 | mpteq12dv | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
| 16 | df-od | ⊢ od = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) | |
| 17 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 18 | nn0ex | ⊢ ℕ0 ∈ V | |
| 19 | nnex | ⊢ ℕ ∈ V | |
| 20 | 19 | rabex | ⊢ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ∈ V |
| 21 | eqeq1 | ⊢ ( 𝑖 = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } → ( 𝑖 = ∅ ↔ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) | |
| 22 | infeq1 | ⊢ ( 𝑖 = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } → inf ( 𝑖 , ℝ , < ) = inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ) | |
| 23 | 21 22 | ifbieq2d | ⊢ ( 𝑖 = { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } → if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ) ) |
| 24 | 20 23 | csbie | ⊢ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ) |
| 25 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 26 | 25 | a1i | ⊢ ( ( ⊤ ∧ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ ) → 0 ∈ ℕ0 ) |
| 27 | df-ne | ⊢ ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ≠ ∅ ↔ ¬ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ ) | |
| 28 | ssrab2 | ⊢ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ⊆ ℕ | |
| 29 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 30 | 28 29 | sseqtri | ⊢ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ⊆ ( ℤ≥ ‘ 1 ) |
| 31 | infssuzcl | ⊢ ( ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ⊆ ( ℤ≥ ‘ 1 ) ∧ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ≠ ∅ ) → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ) | |
| 32 | 30 31 | mpan | ⊢ ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ≠ ∅ → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ) |
| 33 | 28 32 | sselid | ⊢ ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } ≠ ∅ → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ℕ ) |
| 34 | 27 33 | sylbir | ⊢ ( ¬ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ℕ ) |
| 35 | 34 | nnnn0d | ⊢ ( ¬ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ℕ0 ) |
| 36 | 35 | adantl | ⊢ ( ( ⊤ ∧ ¬ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ ) → inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ∈ ℕ0 ) |
| 37 | 26 36 | ifclda | ⊢ ( ⊤ → if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ) ∈ ℕ0 ) |
| 38 | 37 | mptru | ⊢ if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } , ℝ , < ) ) ∈ ℕ0 |
| 39 | 24 38 | eqeltri | ⊢ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ∈ ℕ0 |
| 40 | 39 | rgenw | ⊢ ∀ 𝑥 ∈ 𝑋 ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ∈ ℕ0 |
| 41 | 17 18 40 | mptexw | ⊢ ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ∈ V |
| 42 | 15 16 41 | fvmpt | ⊢ ( 𝐺 ∈ V → ( od ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
| 43 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( od ‘ 𝐺 ) = ∅ ) | |
| 44 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( Base ‘ 𝐺 ) = ∅ ) | |
| 45 | 1 44 | eqtrid | ⊢ ( ¬ 𝐺 ∈ V → 𝑋 = ∅ ) |
| 46 | 45 | mpteq1d | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ( 𝑥 ∈ ∅ ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
| 47 | mpt0 | ⊢ ( 𝑥 ∈ ∅ ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ∅ | |
| 48 | 46 47 | eqtrdi | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) = ∅ ) |
| 49 | 43 48 | eqtr4d | ⊢ ( ¬ 𝐺 ∈ V → ( od ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) ) |
| 50 | 42 49 | pm2.61i | ⊢ ( od ‘ 𝐺 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |
| 51 | 4 50 | eqtri | ⊢ 𝑂 = ( 𝑥 ∈ 𝑋 ↦ ⦋ { 𝑦 ∈ ℕ ∣ ( 𝑦 · 𝑥 ) = 0 } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) |