This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shorter proof of odfval using ax-rep . (Contributed by Mario Carneiro, 13-Jul-2014) (Revised by AV, 5-Oct-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odval.1 | |- X = ( Base ` G ) |
|
| odval.2 | |- .x. = ( .g ` G ) |
||
| odval.3 | |- .0. = ( 0g ` G ) |
||
| odval.4 | |- O = ( od ` G ) |
||
| Assertion | odfvalALT | |- O = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odval.1 | |- X = ( Base ` G ) |
|
| 2 | odval.2 | |- .x. = ( .g ` G ) |
|
| 3 | odval.3 | |- .0. = ( 0g ` G ) |
|
| 4 | odval.4 | |- O = ( od ` G ) |
|
| 5 | fveq2 | |- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
|
| 6 | 5 1 | eqtr4di | |- ( g = G -> ( Base ` g ) = X ) |
| 7 | fveq2 | |- ( g = G -> ( .g ` g ) = ( .g ` G ) ) |
|
| 8 | 7 2 | eqtr4di | |- ( g = G -> ( .g ` g ) = .x. ) |
| 9 | 8 | oveqd | |- ( g = G -> ( y ( .g ` g ) x ) = ( y .x. x ) ) |
| 10 | fveq2 | |- ( g = G -> ( 0g ` g ) = ( 0g ` G ) ) |
|
| 11 | 10 3 | eqtr4di | |- ( g = G -> ( 0g ` g ) = .0. ) |
| 12 | 9 11 | eqeq12d | |- ( g = G -> ( ( y ( .g ` g ) x ) = ( 0g ` g ) <-> ( y .x. x ) = .0. ) ) |
| 13 | 12 | rabbidv | |- ( g = G -> { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } = { y e. NN | ( y .x. x ) = .0. } ) |
| 14 | 13 | csbeq1d | |- ( g = G -> [_ { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) = [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |
| 15 | 6 14 | mpteq12dv | |- ( g = G -> ( x e. ( Base ` g ) |-> [_ { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| 16 | df-od | |- od = ( g e. _V |-> ( x e. ( Base ` g ) |-> [_ { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
|
| 17 | 15 16 1 | mptfvmpt | |- ( G e. _V -> ( od ` G ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| 18 | fvprc | |- ( -. G e. _V -> ( od ` G ) = (/) ) |
|
| 19 | fvprc | |- ( -. G e. _V -> ( Base ` G ) = (/) ) |
|
| 20 | 1 19 | eqtrid | |- ( -. G e. _V -> X = (/) ) |
| 21 | 20 | mpteq1d | |- ( -. G e. _V -> ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = ( x e. (/) |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| 22 | mpt0 | |- ( x e. (/) |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = (/) |
|
| 23 | 21 22 | eqtrdi | |- ( -. G e. _V -> ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = (/) ) |
| 24 | 18 23 | eqtr4d | |- ( -. G e. _V -> ( od ` G ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| 25 | 17 24 | pm2.61i | |- ( od ` G ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |
| 26 | 4 25 | eqtri | |- O = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |