This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the order function. For a shorter proof using ax-rep , see odfvalALT . (Contributed by Mario Carneiro, 13-Jul-2014) (Revised by AV, 5-Oct-2020) Remove dependency on ax-rep . (Revised by Rohan Ridenour, 17-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odval.1 | |- X = ( Base ` G ) |
|
| odval.2 | |- .x. = ( .g ` G ) |
||
| odval.3 | |- .0. = ( 0g ` G ) |
||
| odval.4 | |- O = ( od ` G ) |
||
| Assertion | odfval | |- O = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odval.1 | |- X = ( Base ` G ) |
|
| 2 | odval.2 | |- .x. = ( .g ` G ) |
|
| 3 | odval.3 | |- .0. = ( 0g ` G ) |
|
| 4 | odval.4 | |- O = ( od ` G ) |
|
| 5 | fveq2 | |- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
|
| 6 | 5 1 | eqtr4di | |- ( g = G -> ( Base ` g ) = X ) |
| 7 | fveq2 | |- ( g = G -> ( .g ` g ) = ( .g ` G ) ) |
|
| 8 | 7 2 | eqtr4di | |- ( g = G -> ( .g ` g ) = .x. ) |
| 9 | 8 | oveqd | |- ( g = G -> ( y ( .g ` g ) x ) = ( y .x. x ) ) |
| 10 | fveq2 | |- ( g = G -> ( 0g ` g ) = ( 0g ` G ) ) |
|
| 11 | 10 3 | eqtr4di | |- ( g = G -> ( 0g ` g ) = .0. ) |
| 12 | 9 11 | eqeq12d | |- ( g = G -> ( ( y ( .g ` g ) x ) = ( 0g ` g ) <-> ( y .x. x ) = .0. ) ) |
| 13 | 12 | rabbidv | |- ( g = G -> { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } = { y e. NN | ( y .x. x ) = .0. } ) |
| 14 | 13 | csbeq1d | |- ( g = G -> [_ { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) = [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |
| 15 | 6 14 | mpteq12dv | |- ( g = G -> ( x e. ( Base ` g ) |-> [_ { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| 16 | df-od | |- od = ( g e. _V |-> ( x e. ( Base ` g ) |-> [_ { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
|
| 17 | 1 | fvexi | |- X e. _V |
| 18 | nn0ex | |- NN0 e. _V |
|
| 19 | nnex | |- NN e. _V |
|
| 20 | 19 | rabex | |- { y e. NN | ( y .x. x ) = .0. } e. _V |
| 21 | eqeq1 | |- ( i = { y e. NN | ( y .x. x ) = .0. } -> ( i = (/) <-> { y e. NN | ( y .x. x ) = .0. } = (/) ) ) |
|
| 22 | infeq1 | |- ( i = { y e. NN | ( y .x. x ) = .0. } -> inf ( i , RR , < ) = inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) ) |
|
| 23 | 21 22 | ifbieq2d | |- ( i = { y e. NN | ( y .x. x ) = .0. } -> if ( i = (/) , 0 , inf ( i , RR , < ) ) = if ( { y e. NN | ( y .x. x ) = .0. } = (/) , 0 , inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) ) ) |
| 24 | 20 23 | csbie | |- [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) = if ( { y e. NN | ( y .x. x ) = .0. } = (/) , 0 , inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) ) |
| 25 | 0nn0 | |- 0 e. NN0 |
|
| 26 | 25 | a1i | |- ( ( T. /\ { y e. NN | ( y .x. x ) = .0. } = (/) ) -> 0 e. NN0 ) |
| 27 | df-ne | |- ( { y e. NN | ( y .x. x ) = .0. } =/= (/) <-> -. { y e. NN | ( y .x. x ) = .0. } = (/) ) |
|
| 28 | ssrab2 | |- { y e. NN | ( y .x. x ) = .0. } C_ NN |
|
| 29 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 30 | 28 29 | sseqtri | |- { y e. NN | ( y .x. x ) = .0. } C_ ( ZZ>= ` 1 ) |
| 31 | infssuzcl | |- ( ( { y e. NN | ( y .x. x ) = .0. } C_ ( ZZ>= ` 1 ) /\ { y e. NN | ( y .x. x ) = .0. } =/= (/) ) -> inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) e. { y e. NN | ( y .x. x ) = .0. } ) |
|
| 32 | 30 31 | mpan | |- ( { y e. NN | ( y .x. x ) = .0. } =/= (/) -> inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) e. { y e. NN | ( y .x. x ) = .0. } ) |
| 33 | 28 32 | sselid | |- ( { y e. NN | ( y .x. x ) = .0. } =/= (/) -> inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) e. NN ) |
| 34 | 27 33 | sylbir | |- ( -. { y e. NN | ( y .x. x ) = .0. } = (/) -> inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) e. NN ) |
| 35 | 34 | nnnn0d | |- ( -. { y e. NN | ( y .x. x ) = .0. } = (/) -> inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) e. NN0 ) |
| 36 | 35 | adantl | |- ( ( T. /\ -. { y e. NN | ( y .x. x ) = .0. } = (/) ) -> inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) e. NN0 ) |
| 37 | 26 36 | ifclda | |- ( T. -> if ( { y e. NN | ( y .x. x ) = .0. } = (/) , 0 , inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) ) e. NN0 ) |
| 38 | 37 | mptru | |- if ( { y e. NN | ( y .x. x ) = .0. } = (/) , 0 , inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) ) e. NN0 |
| 39 | 24 38 | eqeltri | |- [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) e. NN0 |
| 40 | 39 | rgenw | |- A. x e. X [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) e. NN0 |
| 41 | 17 18 40 | mptexw | |- ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) e. _V |
| 42 | 15 16 41 | fvmpt | |- ( G e. _V -> ( od ` G ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| 43 | fvprc | |- ( -. G e. _V -> ( od ` G ) = (/) ) |
|
| 44 | fvprc | |- ( -. G e. _V -> ( Base ` G ) = (/) ) |
|
| 45 | 1 44 | eqtrid | |- ( -. G e. _V -> X = (/) ) |
| 46 | 45 | mpteq1d | |- ( -. G e. _V -> ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = ( x e. (/) |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| 47 | mpt0 | |- ( x e. (/) |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = (/) |
|
| 48 | 46 47 | eqtrdi | |- ( -. G e. _V -> ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = (/) ) |
| 49 | 43 48 | eqtr4d | |- ( -. G e. _V -> ( od ` G ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| 50 | 42 49 | pm2.61i | |- ( od ` G ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |
| 51 | 4 50 | eqtri | |- O = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |