This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak version of mptex that holds without ax-rep . If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptexw.1 | ⊢ 𝐴 ∈ V | |
| mptexw.2 | ⊢ 𝐶 ∈ V | ||
| mptexw.3 | ⊢ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 | ||
| Assertion | mptexw | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptexw.1 | ⊢ 𝐴 ∈ V | |
| 2 | mptexw.2 | ⊢ 𝐶 ∈ V | |
| 3 | mptexw.3 | ⊢ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 | |
| 4 | funmpt | ⊢ Fun ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 5 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 6 | 5 | dmmptss | ⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐴 |
| 7 | 1 6 | ssexi | ⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V |
| 8 | 5 | rnmptss | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐶 ) |
| 9 | 3 8 | ax-mp | ⊢ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐶 |
| 10 | 2 9 | ssexi | ⊢ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V |
| 11 | funexw | ⊢ ( ( Fun ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ∧ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) | |
| 12 | 4 7 10 11 | mp3an | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V |