This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An odd prime is greater than or equal to 3. (Contributed by Alexander van der Vekens, 7-Oct-2018) (Revised by AV, 20-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddprmge3 | ⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ( ℤ≥ ‘ 3 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi | ⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℙ ) | |
| 2 | oddprmgt2 | ⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 2 < 𝑃 ) | |
| 3 | 3z | ⊢ 3 ∈ ℤ | |
| 4 | 3 | a1i | ⊢ ( ( 𝑃 ∈ ℙ ∧ 2 < 𝑃 ) → 3 ∈ ℤ ) |
| 5 | prmz | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 2 < 𝑃 ) → 𝑃 ∈ ℤ ) |
| 7 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 8 | 2z | ⊢ 2 ∈ ℤ | |
| 9 | zltp1le | ⊢ ( ( 2 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 2 < 𝑃 ↔ ( 2 + 1 ) ≤ 𝑃 ) ) | |
| 10 | 8 5 9 | sylancr | ⊢ ( 𝑃 ∈ ℙ → ( 2 < 𝑃 ↔ ( 2 + 1 ) ≤ 𝑃 ) ) |
| 11 | 10 | biimpa | ⊢ ( ( 𝑃 ∈ ℙ ∧ 2 < 𝑃 ) → ( 2 + 1 ) ≤ 𝑃 ) |
| 12 | 7 11 | eqbrtrid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 2 < 𝑃 ) → 3 ≤ 𝑃 ) |
| 13 | 4 6 12 | 3jca | ⊢ ( ( 𝑃 ∈ ℙ ∧ 2 < 𝑃 ) → ( 3 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 3 ≤ 𝑃 ) ) |
| 14 | 1 2 13 | syl2anc | ⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 3 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 3 ≤ 𝑃 ) ) |
| 15 | eluz2 | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 3 ) ↔ ( 3 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 3 ≤ 𝑃 ) ) | |
| 16 | 14 15 | sylibr | ⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ( ℤ≥ ‘ 3 ) ) |