This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An odd prime is greater than or equal to 3. (Contributed by Alexander van der Vekens, 7-Oct-2018) (Revised by AV, 20-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddprmge3 | |- ( P e. ( Prime \ { 2 } ) -> P e. ( ZZ>= ` 3 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi | |- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
|
| 2 | oddprmgt2 | |- ( P e. ( Prime \ { 2 } ) -> 2 < P ) |
|
| 3 | 3z | |- 3 e. ZZ |
|
| 4 | 3 | a1i | |- ( ( P e. Prime /\ 2 < P ) -> 3 e. ZZ ) |
| 5 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 6 | 5 | adantr | |- ( ( P e. Prime /\ 2 < P ) -> P e. ZZ ) |
| 7 | df-3 | |- 3 = ( 2 + 1 ) |
|
| 8 | 2z | |- 2 e. ZZ |
|
| 9 | zltp1le | |- ( ( 2 e. ZZ /\ P e. ZZ ) -> ( 2 < P <-> ( 2 + 1 ) <_ P ) ) |
|
| 10 | 8 5 9 | sylancr | |- ( P e. Prime -> ( 2 < P <-> ( 2 + 1 ) <_ P ) ) |
| 11 | 10 | biimpa | |- ( ( P e. Prime /\ 2 < P ) -> ( 2 + 1 ) <_ P ) |
| 12 | 7 11 | eqbrtrid | |- ( ( P e. Prime /\ 2 < P ) -> 3 <_ P ) |
| 13 | 4 6 12 | 3jca | |- ( ( P e. Prime /\ 2 < P ) -> ( 3 e. ZZ /\ P e. ZZ /\ 3 <_ P ) ) |
| 14 | 1 2 13 | syl2anc | |- ( P e. ( Prime \ { 2 } ) -> ( 3 e. ZZ /\ P e. ZZ /\ 3 <_ P ) ) |
| 15 | eluz2 | |- ( P e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ P e. ZZ /\ 3 <_ P ) ) |
|
| 16 | 14 15 | sylibr | |- ( P e. ( Prime \ { 2 } ) -> P e. ( ZZ>= ` 3 ) ) |