This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An odd prime is greater than 2. (Contributed by AV, 20-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddprmgt2 | ⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 2 < 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | ⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ) | |
| 2 | prmuz2 | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 3 | eluz2 | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 2 ≤ 𝑃 ) ) | |
| 4 | zre | ⊢ ( 2 ∈ ℤ → 2 ∈ ℝ ) | |
| 5 | zre | ⊢ ( 𝑃 ∈ ℤ → 𝑃 ∈ ℝ ) | |
| 6 | ltlen | ⊢ ( ( 2 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( 2 < 𝑃 ↔ ( 2 ≤ 𝑃 ∧ 𝑃 ≠ 2 ) ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 2 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 2 < 𝑃 ↔ ( 2 ≤ 𝑃 ∧ 𝑃 ≠ 2 ) ) ) |
| 8 | 7 | biimprd | ⊢ ( ( 2 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 2 ≤ 𝑃 ∧ 𝑃 ≠ 2 ) → 2 < 𝑃 ) ) |
| 9 | 8 | exp4b | ⊢ ( 2 ∈ ℤ → ( 𝑃 ∈ ℤ → ( 2 ≤ 𝑃 → ( 𝑃 ≠ 2 → 2 < 𝑃 ) ) ) ) |
| 10 | 9 | 3imp | ⊢ ( ( 2 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 2 ≤ 𝑃 ) → ( 𝑃 ≠ 2 → 2 < 𝑃 ) ) |
| 11 | 3 10 | sylbi | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑃 ≠ 2 → 2 < 𝑃 ) ) |
| 12 | 2 11 | syl | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ≠ 2 → 2 < 𝑃 ) ) |
| 13 | 12 | imp | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) → 2 < 𝑃 ) |
| 14 | 1 13 | sylbi | ⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 2 < 𝑃 ) |