This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement of the zero subspace. (Contributed by Mario Carneiro, 23-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvz.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ocvz.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | ||
| ocvz.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| Assertion | ocvz | ⊢ ( 𝑊 ∈ PreHil → ( ⊥ ‘ { 0 } ) = 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvz.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ocvz.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 3 | ocvz.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 4 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 5 | eqid | ⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) | |
| 6 | 3 5 | lsp0 | ⊢ ( 𝑊 ∈ LMod → ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) = { 0 } ) |
| 7 | 4 6 | syl | ⊢ ( 𝑊 ∈ PreHil → ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) = { 0 } ) |
| 8 | 7 | fveq2d | ⊢ ( 𝑊 ∈ PreHil → ( ⊥ ‘ ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) = ( ⊥ ‘ { 0 } ) ) |
| 9 | 0ss | ⊢ ∅ ⊆ 𝑉 | |
| 10 | 1 2 5 | ocvlsp | ⊢ ( ( 𝑊 ∈ PreHil ∧ ∅ ⊆ 𝑉 ) → ( ⊥ ‘ ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) = ( ⊥ ‘ ∅ ) ) |
| 11 | 9 10 | mpan2 | ⊢ ( 𝑊 ∈ PreHil → ( ⊥ ‘ ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) = ( ⊥ ‘ ∅ ) ) |
| 12 | 1 2 | ocv0 | ⊢ ( ⊥ ‘ ∅ ) = 𝑉 |
| 13 | 11 12 | eqtrdi | ⊢ ( 𝑊 ∈ PreHil → ( ⊥ ‘ ( ( LSpan ‘ 𝑊 ) ‘ ∅ ) ) = 𝑉 ) |
| 14 | 8 13 | eqtr3d | ⊢ ( 𝑊 ∈ PreHil → ( ⊥ ‘ { 0 } ) = 𝑉 ) |