This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement of the base set. (Contributed by Mario Carneiro, 23-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvz.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ocvz.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | ||
| ocvz.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| Assertion | ocv1 | ⊢ ( 𝑊 ∈ PreHil → ( ⊥ ‘ 𝑉 ) = { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvz.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ocvz.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 3 | ocvz.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 4 | 1 2 | ocvss | ⊢ ( ⊥ ‘ 𝑉 ) ⊆ 𝑉 |
| 5 | sseqin2 | ⊢ ( ( ⊥ ‘ 𝑉 ) ⊆ 𝑉 ↔ ( 𝑉 ∩ ( ⊥ ‘ 𝑉 ) ) = ( ⊥ ‘ 𝑉 ) ) | |
| 6 | 4 5 | mpbi | ⊢ ( 𝑉 ∩ ( ⊥ ‘ 𝑉 ) ) = ( ⊥ ‘ 𝑉 ) |
| 7 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 8 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 9 | 1 8 | lss1 | ⊢ ( 𝑊 ∈ LMod → 𝑉 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 10 | 7 9 | syl | ⊢ ( 𝑊 ∈ PreHil → 𝑉 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 11 | 2 8 3 | ocvin | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑉 ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑉 ∩ ( ⊥ ‘ 𝑉 ) ) = { 0 } ) |
| 12 | 10 11 | mpdan | ⊢ ( 𝑊 ∈ PreHil → ( 𝑉 ∩ ( ⊥ ‘ 𝑉 ) ) = { 0 } ) |
| 13 | 6 12 | eqtr3id | ⊢ ( 𝑊 ∈ PreHil → ( ⊥ ‘ 𝑉 ) = { 0 } ) |