This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement of the zero subspace. (Contributed by Mario Carneiro, 23-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvz.v | |- V = ( Base ` W ) |
|
| ocvz.o | |- ._|_ = ( ocv ` W ) |
||
| ocvz.z | |- .0. = ( 0g ` W ) |
||
| Assertion | ocvz | |- ( W e. PreHil -> ( ._|_ ` { .0. } ) = V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvz.v | |- V = ( Base ` W ) |
|
| 2 | ocvz.o | |- ._|_ = ( ocv ` W ) |
|
| 3 | ocvz.z | |- .0. = ( 0g ` W ) |
|
| 4 | phllmod | |- ( W e. PreHil -> W e. LMod ) |
|
| 5 | eqid | |- ( LSpan ` W ) = ( LSpan ` W ) |
|
| 6 | 3 5 | lsp0 | |- ( W e. LMod -> ( ( LSpan ` W ) ` (/) ) = { .0. } ) |
| 7 | 4 6 | syl | |- ( W e. PreHil -> ( ( LSpan ` W ) ` (/) ) = { .0. } ) |
| 8 | 7 | fveq2d | |- ( W e. PreHil -> ( ._|_ ` ( ( LSpan ` W ) ` (/) ) ) = ( ._|_ ` { .0. } ) ) |
| 9 | 0ss | |- (/) C_ V |
|
| 10 | 1 2 5 | ocvlsp | |- ( ( W e. PreHil /\ (/) C_ V ) -> ( ._|_ ` ( ( LSpan ` W ) ` (/) ) ) = ( ._|_ ` (/) ) ) |
| 11 | 9 10 | mpan2 | |- ( W e. PreHil -> ( ._|_ ` ( ( LSpan ` W ) ` (/) ) ) = ( ._|_ ` (/) ) ) |
| 12 | 1 2 | ocv0 | |- ( ._|_ ` (/) ) = V |
| 13 | 11 12 | eqtrdi | |- ( W e. PreHil -> ( ._|_ ` ( ( LSpan ` W ) ` (/) ) ) = V ) |
| 14 | 8 13 | eqtr3d | |- ( W e. PreHil -> ( ._|_ ` { .0. } ) = V ) |