This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero subspace is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | css0.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| Assertion | cssincl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | css0.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) | |
| 4 | 2 3 | ocvss | ⊢ ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ⊆ ( Base ‘ 𝑊 ) |
| 5 | 2 3 | ocvss | ⊢ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ⊆ ( Base ‘ 𝑊 ) |
| 6 | 4 5 | unssi | ⊢ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ∪ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ⊆ ( Base ‘ 𝑊 ) |
| 7 | 2 1 3 | ocvcss | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ∪ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ⊆ ( Base ‘ 𝑊 ) ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ∪ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) ∈ 𝐶 ) |
| 8 | 6 7 | mpan2 | ⊢ ( 𝑊 ∈ PreHil → ( ( ocv ‘ 𝑊 ) ‘ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ∪ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) ∈ 𝐶 ) |
| 9 | 3 1 | cssi | ⊢ ( 𝐴 ∈ 𝐶 → 𝐴 = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ) ) |
| 10 | 3 1 | cssi | ⊢ ( 𝐵 ∈ 𝐶 → 𝐵 = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) |
| 11 | 9 10 | ineqan12d | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) = ( ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ) ∩ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) ) |
| 12 | 3 | unocv | ⊢ ( ( ocv ‘ 𝑊 ) ‘ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ∪ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) = ( ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ) ∩ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) |
| 13 | 11 12 | eqtr4di | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) = ( ( ocv ‘ 𝑊 ) ‘ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ∪ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) ) |
| 14 | 13 | eleq1d | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ↔ ( ( ocv ‘ 𝑊 ) ‘ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ∪ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) ∈ 𝐶 ) ) |
| 15 | 8 14 | syl5ibrcom | ⊢ ( 𝑊 ∈ PreHil → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) ) |
| 16 | 15 | 3impib | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐶 ) |