This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal addition is not commutative. This theorem shows a counterexample. Remark in TakeutiZaring p. 60. (Contributed by NM, 10-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oancom | |- ( 1o +o _om ) =/= ( _om +o 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex | |- _om e. _V |
|
| 2 | 1 | sucid | |- _om e. suc _om |
| 3 | omelon | |- _om e. On |
|
| 4 | 1onn | |- 1o e. _om |
|
| 5 | oaabslem | |- ( ( _om e. On /\ 1o e. _om ) -> ( 1o +o _om ) = _om ) |
|
| 6 | 3 4 5 | mp2an | |- ( 1o +o _om ) = _om |
| 7 | oa1suc | |- ( _om e. On -> ( _om +o 1o ) = suc _om ) |
|
| 8 | 3 7 | ax-mp | |- ( _om +o 1o ) = suc _om |
| 9 | 2 6 8 | 3eltr4i | |- ( 1o +o _om ) e. ( _om +o 1o ) |
| 10 | 1on | |- 1o e. On |
|
| 11 | oacl | |- ( ( 1o e. On /\ _om e. On ) -> ( 1o +o _om ) e. On ) |
|
| 12 | 10 3 11 | mp2an | |- ( 1o +o _om ) e. On |
| 13 | oacl | |- ( ( _om e. On /\ 1o e. On ) -> ( _om +o 1o ) e. On ) |
|
| 14 | 3 10 13 | mp2an | |- ( _om +o 1o ) e. On |
| 15 | onelpss | |- ( ( ( 1o +o _om ) e. On /\ ( _om +o 1o ) e. On ) -> ( ( 1o +o _om ) e. ( _om +o 1o ) <-> ( ( 1o +o _om ) C_ ( _om +o 1o ) /\ ( 1o +o _om ) =/= ( _om +o 1o ) ) ) ) |
|
| 16 | 12 14 15 | mp2an | |- ( ( 1o +o _om ) e. ( _om +o 1o ) <-> ( ( 1o +o _om ) C_ ( _om +o 1o ) /\ ( 1o +o _om ) =/= ( _om +o 1o ) ) ) |
| 17 | 16 | simprbi | |- ( ( 1o +o _om ) e. ( _om +o 1o ) -> ( 1o +o _om ) =/= ( _om +o 1o ) ) |
| 18 | 9 17 | ax-mp | |- ( 1o +o _om ) =/= ( _om +o 1o ) |