This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal addition is not commutative. This theorem shows a counterexample. Remark in TakeutiZaring p. 60. (Contributed by NM, 10-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oancom |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex | ||
| 2 | 1 | sucid | |
| 3 | omelon | ||
| 4 | 1onn | ||
| 5 | oaabslem | ||
| 6 | 3 4 5 | mp2an | |
| 7 | oa1suc | ||
| 8 | 3 7 | ax-mp | |
| 9 | 2 6 8 | 3eltr4i | |
| 10 | 1on | ||
| 11 | oacl | ||
| 12 | 10 3 11 | mp2an | |
| 13 | oacl | ||
| 14 | 3 10 13 | mp2an | |
| 15 | onelpss | ||
| 16 | 12 14 15 | mp2an | |
| 17 | 16 | simprbi | |
| 18 | 9 17 | ax-mp |