This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of an eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lo1res | ⊢ ( 𝐹 ∈ ≤𝑂(1) → ( 𝐹 ↾ 𝐴 ) ∈ ≤𝑂(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lo1f | ⊢ ( 𝐹 ∈ ≤𝑂(1) → 𝐹 : dom 𝐹 ⟶ ℝ ) | |
| 2 | lo1bdd | ⊢ ( ( 𝐹 ∈ ≤𝑂(1) ∧ 𝐹 : dom 𝐹 ⟶ ℝ ) → ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) | |
| 3 | 1 2 | mpdan | ⊢ ( 𝐹 ∈ ≤𝑂(1) → ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |
| 4 | inss1 | ⊢ ( dom 𝐹 ∩ 𝐴 ) ⊆ dom 𝐹 | |
| 5 | ssralv | ⊢ ( ( dom 𝐹 ∩ 𝐴 ) ⊆ dom 𝐹 → ( ∀ 𝑦 ∈ dom 𝐹 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) → ∀ 𝑦 ∈ ( dom 𝐹 ∩ 𝐴 ) ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( ∀ 𝑦 ∈ dom 𝐹 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) → ∀ 𝑦 ∈ ( dom 𝐹 ∩ 𝐴 ) ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |
| 7 | elinel2 | ⊢ ( 𝑦 ∈ ( dom 𝐹 ∩ 𝐴 ) → 𝑦 ∈ 𝐴 ) | |
| 8 | 7 | fvresd | ⊢ ( 𝑦 ∈ ( dom 𝐹 ∩ 𝐴 ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 9 | 8 | breq1d | ⊢ ( 𝑦 ∈ ( dom 𝐹 ∩ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ≤ 𝑚 ↔ ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑦 ∈ ( dom 𝐹 ∩ 𝐴 ) → ( ( 𝑥 ≤ 𝑦 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ≤ 𝑚 ) ↔ ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) ) |
| 11 | 10 | ralbiia | ⊢ ( ∀ 𝑦 ∈ ( dom 𝐹 ∩ 𝐴 ) ( 𝑥 ≤ 𝑦 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ≤ 𝑚 ) ↔ ∀ 𝑦 ∈ ( dom 𝐹 ∩ 𝐴 ) ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |
| 12 | 6 11 | sylibr | ⊢ ( ∀ 𝑦 ∈ dom 𝐹 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) → ∀ 𝑦 ∈ ( dom 𝐹 ∩ 𝐴 ) ( 𝑥 ≤ 𝑦 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ≤ 𝑚 ) ) |
| 13 | 12 | reximi | ⊢ ( ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) → ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ 𝐴 ) ( 𝑥 ≤ 𝑦 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ≤ 𝑚 ) ) |
| 14 | 13 | reximi | ⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) → ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ 𝐴 ) ( 𝑥 ≤ 𝑦 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ≤ 𝑚 ) ) |
| 15 | 3 14 | syl | ⊢ ( 𝐹 ∈ ≤𝑂(1) → ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ 𝐴 ) ( 𝑥 ≤ 𝑦 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ≤ 𝑚 ) ) |
| 16 | fssres | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℝ ∧ ( dom 𝐹 ∩ 𝐴 ) ⊆ dom 𝐹 ) → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) : ( dom 𝐹 ∩ 𝐴 ) ⟶ ℝ ) | |
| 17 | 1 4 16 | sylancl | ⊢ ( 𝐹 ∈ ≤𝑂(1) → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) : ( dom 𝐹 ∩ 𝐴 ) ⟶ ℝ ) |
| 18 | resres | ⊢ ( ( 𝐹 ↾ dom 𝐹 ) ↾ 𝐴 ) = ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) | |
| 19 | ffn | ⊢ ( 𝐹 : dom 𝐹 ⟶ ℝ → 𝐹 Fn dom 𝐹 ) | |
| 20 | fnresdm | ⊢ ( 𝐹 Fn dom 𝐹 → ( 𝐹 ↾ dom 𝐹 ) = 𝐹 ) | |
| 21 | 1 19 20 | 3syl | ⊢ ( 𝐹 ∈ ≤𝑂(1) → ( 𝐹 ↾ dom 𝐹 ) = 𝐹 ) |
| 22 | 21 | reseq1d | ⊢ ( 𝐹 ∈ ≤𝑂(1) → ( ( 𝐹 ↾ dom 𝐹 ) ↾ 𝐴 ) = ( 𝐹 ↾ 𝐴 ) ) |
| 23 | 18 22 | eqtr3id | ⊢ ( 𝐹 ∈ ≤𝑂(1) → ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) = ( 𝐹 ↾ 𝐴 ) ) |
| 24 | 23 | feq1d | ⊢ ( 𝐹 ∈ ≤𝑂(1) → ( ( 𝐹 ↾ ( dom 𝐹 ∩ 𝐴 ) ) : ( dom 𝐹 ∩ 𝐴 ) ⟶ ℝ ↔ ( 𝐹 ↾ 𝐴 ) : ( dom 𝐹 ∩ 𝐴 ) ⟶ ℝ ) ) |
| 25 | 17 24 | mpbid | ⊢ ( 𝐹 ∈ ≤𝑂(1) → ( 𝐹 ↾ 𝐴 ) : ( dom 𝐹 ∩ 𝐴 ) ⟶ ℝ ) |
| 26 | lo1dm | ⊢ ( 𝐹 ∈ ≤𝑂(1) → dom 𝐹 ⊆ ℝ ) | |
| 27 | 4 26 | sstrid | ⊢ ( 𝐹 ∈ ≤𝑂(1) → ( dom 𝐹 ∩ 𝐴 ) ⊆ ℝ ) |
| 28 | ello12 | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) : ( dom 𝐹 ∩ 𝐴 ) ⟶ ℝ ∧ ( dom 𝐹 ∩ 𝐴 ) ⊆ ℝ ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ≤𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ 𝐴 ) ( 𝑥 ≤ 𝑦 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ≤ 𝑚 ) ) ) | |
| 29 | 25 27 28 | syl2anc | ⊢ ( 𝐹 ∈ ≤𝑂(1) → ( ( 𝐹 ↾ 𝐴 ) ∈ ≤𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ 𝐴 ) ( 𝑥 ≤ 𝑦 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) ≤ 𝑚 ) ) ) |
| 30 | 15 29 | mpbird | ⊢ ( 𝐹 ∈ ≤𝑂(1) → ( 𝐹 ↾ 𝐴 ) ∈ ≤𝑂(1) ) |