This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of an eventually bounded function is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014) (Proof shortened by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | o1res | |- ( F e. O(1) -> ( F |` A ) e. O(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resco | |- ( ( abs o. F ) |` A ) = ( abs o. ( F |` A ) ) |
|
| 2 | o1f | |- ( F e. O(1) -> F : dom F --> CC ) |
|
| 3 | lo1o1 | |- ( F : dom F --> CC -> ( F e. O(1) <-> ( abs o. F ) e. <_O(1) ) ) |
|
| 4 | 2 3 | syl | |- ( F e. O(1) -> ( F e. O(1) <-> ( abs o. F ) e. <_O(1) ) ) |
| 5 | 4 | ibi | |- ( F e. O(1) -> ( abs o. F ) e. <_O(1) ) |
| 6 | lo1res | |- ( ( abs o. F ) e. <_O(1) -> ( ( abs o. F ) |` A ) e. <_O(1) ) |
|
| 7 | 5 6 | syl | |- ( F e. O(1) -> ( ( abs o. F ) |` A ) e. <_O(1) ) |
| 8 | 1 7 | eqeltrrid | |- ( F e. O(1) -> ( abs o. ( F |` A ) ) e. <_O(1) ) |
| 9 | fresin | |- ( F : dom F --> CC -> ( F |` A ) : ( dom F i^i A ) --> CC ) |
|
| 10 | lo1o1 | |- ( ( F |` A ) : ( dom F i^i A ) --> CC -> ( ( F |` A ) e. O(1) <-> ( abs o. ( F |` A ) ) e. <_O(1) ) ) |
|
| 11 | 2 9 10 | 3syl | |- ( F e. O(1) -> ( ( F |` A ) e. O(1) <-> ( abs o. ( F |` A ) ) e. <_O(1) ) ) |
| 12 | 8 11 | mpbird | |- ( F e. O(1) -> ( F |` A ) e. O(1) ) |