This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ello1mpt.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| ello1mpt.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| ello1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| ello1d.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| ello1d.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → 𝐵 ≤ 𝑀 ) | ||
| Assertion | ello1d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ello1mpt.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | ello1mpt.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 3 | ello1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 4 | ello1d.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 5 | ello1d.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → 𝐵 ≤ 𝑀 ) | |
| 6 | 5 | expr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀 ) ) |
| 7 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀 ) ) |
| 8 | breq1 | ⊢ ( 𝑦 = 𝐶 → ( 𝑦 ≤ 𝑥 ↔ 𝐶 ≤ 𝑥 ) ) | |
| 9 | 8 | imbi1d | ⊢ ( 𝑦 = 𝐶 → ( ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ↔ ( 𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
| 10 | 9 | ralbidv | ⊢ ( 𝑦 = 𝐶 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
| 11 | breq2 | ⊢ ( 𝑚 = 𝑀 → ( 𝐵 ≤ 𝑚 ↔ 𝐵 ≤ 𝑀 ) ) | |
| 12 | 11 | imbi2d | ⊢ ( 𝑚 = 𝑀 → ( ( 𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ↔ ( 𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀 ) ) ) |
| 13 | 12 | ralbidv | ⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀 ) ) ) |
| 14 | 10 13 | rspc2ev | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀 ) ) → ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) |
| 15 | 3 4 7 14 | syl3anc | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) |
| 16 | 1 2 | ello1mpt | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
| 17 | 15 16 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) |