This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bounded real function is eventually bounded iff it is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | o1lo1.1 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
|
| o1lo12.2 | |- ( ph -> M e. RR ) |
||
| o1lo12.3 | |- ( ( ph /\ x e. A ) -> M <_ B ) |
||
| Assertion | o1lo12 | |- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> B ) e. <_O(1) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1lo1.1 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
|
| 2 | o1lo12.2 | |- ( ph -> M e. RR ) |
|
| 3 | o1lo12.3 | |- ( ( ph /\ x e. A ) -> M <_ B ) |
|
| 4 | o1dm | |- ( ( x e. A |-> B ) e. O(1) -> dom ( x e. A |-> B ) C_ RR ) |
|
| 5 | 4 | a1i | |- ( ph -> ( ( x e. A |-> B ) e. O(1) -> dom ( x e. A |-> B ) C_ RR ) ) |
| 6 | lo1dm | |- ( ( x e. A |-> B ) e. <_O(1) -> dom ( x e. A |-> B ) C_ RR ) |
|
| 7 | 6 | a1i | |- ( ph -> ( ( x e. A |-> B ) e. <_O(1) -> dom ( x e. A |-> B ) C_ RR ) ) |
| 8 | 1 | ralrimiva | |- ( ph -> A. x e. A B e. RR ) |
| 9 | dmmptg | |- ( A. x e. A B e. RR -> dom ( x e. A |-> B ) = A ) |
|
| 10 | 8 9 | syl | |- ( ph -> dom ( x e. A |-> B ) = A ) |
| 11 | 10 | sseq1d | |- ( ph -> ( dom ( x e. A |-> B ) C_ RR <-> A C_ RR ) ) |
| 12 | simpr | |- ( ( ph /\ A C_ RR ) -> A C_ RR ) |
|
| 13 | 1 | renegcld | |- ( ( ph /\ x e. A ) -> -u B e. RR ) |
| 14 | 13 | adantlr | |- ( ( ( ph /\ A C_ RR ) /\ x e. A ) -> -u B e. RR ) |
| 15 | 2 | adantr | |- ( ( ph /\ A C_ RR ) -> M e. RR ) |
| 16 | 15 | renegcld | |- ( ( ph /\ A C_ RR ) -> -u M e. RR ) |
| 17 | 2 | adantr | |- ( ( ph /\ x e. A ) -> M e. RR ) |
| 18 | 17 1 | lenegd | |- ( ( ph /\ x e. A ) -> ( M <_ B <-> -u B <_ -u M ) ) |
| 19 | 3 18 | mpbid | |- ( ( ph /\ x e. A ) -> -u B <_ -u M ) |
| 20 | 19 | ad2ant2r | |- ( ( ( ph /\ A C_ RR ) /\ ( x e. A /\ M <_ x ) ) -> -u B <_ -u M ) |
| 21 | 12 14 15 16 20 | ello1d | |- ( ( ph /\ A C_ RR ) -> ( x e. A |-> -u B ) e. <_O(1) ) |
| 22 | 1 | o1lo1 | |- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( ( x e. A |-> B ) e. <_O(1) /\ ( x e. A |-> -u B ) e. <_O(1) ) ) ) |
| 23 | 22 | rbaibd | |- ( ( ph /\ ( x e. A |-> -u B ) e. <_O(1) ) -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> B ) e. <_O(1) ) ) |
| 24 | 21 23 | syldan | |- ( ( ph /\ A C_ RR ) -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> B ) e. <_O(1) ) ) |
| 25 | 24 | ex | |- ( ph -> ( A C_ RR -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> B ) e. <_O(1) ) ) ) |
| 26 | 11 25 | sylbid | |- ( ph -> ( dom ( x e. A |-> B ) C_ RR -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> B ) e. <_O(1) ) ) ) |
| 27 | 5 7 26 | pm5.21ndd | |- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> B ) e. <_O(1) ) ) |