This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same components (properties), one is a nonzero ring iff the other one is. (Contributed by SN, 21-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nzrpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| nzrpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| nzrpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| nzrpropd.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
||
| Assertion | nzrpropd | |- ( ph -> ( K e. NzRing <-> L e. NzRing ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nzrpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | nzrpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | nzrpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 4 | nzrpropd.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
|
| 5 | 1 2 3 4 | ringpropd | |- ( ph -> ( K e. Ring <-> L e. Ring ) ) |
| 6 | 1 2 4 | rngidpropd | |- ( ph -> ( 1r ` K ) = ( 1r ` L ) ) |
| 7 | 1 2 3 | grpidpropd | |- ( ph -> ( 0g ` K ) = ( 0g ` L ) ) |
| 8 | 6 7 | neeq12d | |- ( ph -> ( ( 1r ` K ) =/= ( 0g ` K ) <-> ( 1r ` L ) =/= ( 0g ` L ) ) ) |
| 9 | 5 8 | anbi12d | |- ( ph -> ( ( K e. Ring /\ ( 1r ` K ) =/= ( 0g ` K ) ) <-> ( L e. Ring /\ ( 1r ` L ) =/= ( 0g ` L ) ) ) ) |
| 10 | eqid | |- ( 1r ` K ) = ( 1r ` K ) |
|
| 11 | eqid | |- ( 0g ` K ) = ( 0g ` K ) |
|
| 12 | 10 11 | isnzr | |- ( K e. NzRing <-> ( K e. Ring /\ ( 1r ` K ) =/= ( 0g ` K ) ) ) |
| 13 | eqid | |- ( 1r ` L ) = ( 1r ` L ) |
|
| 14 | eqid | |- ( 0g ` L ) = ( 0g ` L ) |
|
| 15 | 13 14 | isnzr | |- ( L e. NzRing <-> ( L e. Ring /\ ( 1r ` L ) =/= ( 0g ` L ) ) ) |
| 16 | 9 12 15 | 3bitr4g | |- ( ph -> ( K e. NzRing <-> L e. NzRing ) ) |