This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 27-Dec-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vsfval.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| vsfval.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| Assertion | vsfval | ⊢ 𝑀 = ( /𝑔 ‘ 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsfval.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 2 | vsfval.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | df-vs | ⊢ −𝑣 = ( /𝑔 ∘ +𝑣 ) | |
| 4 | 3 | fveq1i | ⊢ ( −𝑣 ‘ 𝑈 ) = ( ( /𝑔 ∘ +𝑣 ) ‘ 𝑈 ) |
| 5 | fo1st | ⊢ 1st : V –onto→ V | |
| 6 | fof | ⊢ ( 1st : V –onto→ V → 1st : V ⟶ V ) | |
| 7 | 5 6 | ax-mp | ⊢ 1st : V ⟶ V |
| 8 | fco | ⊢ ( ( 1st : V ⟶ V ∧ 1st : V ⟶ V ) → ( 1st ∘ 1st ) : V ⟶ V ) | |
| 9 | 7 7 8 | mp2an | ⊢ ( 1st ∘ 1st ) : V ⟶ V |
| 10 | df-va | ⊢ +𝑣 = ( 1st ∘ 1st ) | |
| 11 | 10 | feq1i | ⊢ ( +𝑣 : V ⟶ V ↔ ( 1st ∘ 1st ) : V ⟶ V ) |
| 12 | 9 11 | mpbir | ⊢ +𝑣 : V ⟶ V |
| 13 | fvco3 | ⊢ ( ( +𝑣 : V ⟶ V ∧ 𝑈 ∈ V ) → ( ( /𝑔 ∘ +𝑣 ) ‘ 𝑈 ) = ( /𝑔 ‘ ( +𝑣 ‘ 𝑈 ) ) ) | |
| 14 | 12 13 | mpan | ⊢ ( 𝑈 ∈ V → ( ( /𝑔 ∘ +𝑣 ) ‘ 𝑈 ) = ( /𝑔 ‘ ( +𝑣 ‘ 𝑈 ) ) ) |
| 15 | 4 14 | eqtrid | ⊢ ( 𝑈 ∈ V → ( −𝑣 ‘ 𝑈 ) = ( /𝑔 ‘ ( +𝑣 ‘ 𝑈 ) ) ) |
| 16 | 0ngrp | ⊢ ¬ ∅ ∈ GrpOp | |
| 17 | vex | ⊢ 𝑔 ∈ V | |
| 18 | 17 | rnex | ⊢ ran 𝑔 ∈ V |
| 19 | 18 18 | mpoex | ⊢ ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) ∈ V |
| 20 | df-gdiv | ⊢ /𝑔 = ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) ) | |
| 21 | 19 20 | dmmpti | ⊢ dom /𝑔 = GrpOp |
| 22 | 21 | eleq2i | ⊢ ( ∅ ∈ dom /𝑔 ↔ ∅ ∈ GrpOp ) |
| 23 | 16 22 | mtbir | ⊢ ¬ ∅ ∈ dom /𝑔 |
| 24 | ndmfv | ⊢ ( ¬ ∅ ∈ dom /𝑔 → ( /𝑔 ‘ ∅ ) = ∅ ) | |
| 25 | 23 24 | mp1i | ⊢ ( ¬ 𝑈 ∈ V → ( /𝑔 ‘ ∅ ) = ∅ ) |
| 26 | fvprc | ⊢ ( ¬ 𝑈 ∈ V → ( +𝑣 ‘ 𝑈 ) = ∅ ) | |
| 27 | 26 | fveq2d | ⊢ ( ¬ 𝑈 ∈ V → ( /𝑔 ‘ ( +𝑣 ‘ 𝑈 ) ) = ( /𝑔 ‘ ∅ ) ) |
| 28 | fvprc | ⊢ ( ¬ 𝑈 ∈ V → ( −𝑣 ‘ 𝑈 ) = ∅ ) | |
| 29 | 25 27 28 | 3eqtr4rd | ⊢ ( ¬ 𝑈 ∈ V → ( −𝑣 ‘ 𝑈 ) = ( /𝑔 ‘ ( +𝑣 ‘ 𝑈 ) ) ) |
| 30 | 15 29 | pm2.61i | ⊢ ( −𝑣 ‘ 𝑈 ) = ( /𝑔 ‘ ( +𝑣 ‘ 𝑈 ) ) |
| 31 | 1 | fveq2i | ⊢ ( /𝑔 ‘ 𝐺 ) = ( /𝑔 ‘ ( +𝑣 ‘ 𝑈 ) ) |
| 32 | 30 2 31 | 3eqtr4i | ⊢ 𝑀 = ( /𝑔 ‘ 𝐺 ) |