This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double negative of a vector. (Contributed by NM, 4-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvnegneg.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvnegneg.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| Assertion | nvnegneg | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 ( - 1 𝑆 𝐴 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvnegneg.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvnegneg.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 3 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 4 | 1 2 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) |
| 5 | 3 4 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) |
| 6 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 7 | eqid | ⊢ ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) = ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) | |
| 8 | 1 6 2 7 | nvinv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) → ( - 1 𝑆 ( - 1 𝑆 𝐴 ) ) = ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ ( - 1 𝑆 𝐴 ) ) ) |
| 9 | 5 8 | syldan | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 ( - 1 𝑆 𝐴 ) ) = ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ ( - 1 𝑆 𝐴 ) ) ) |
| 10 | 1 6 2 7 | nvinv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) = ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ 𝐴 ) ) |
| 11 | 10 | fveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ ( - 1 𝑆 𝐴 ) ) = ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ 𝐴 ) ) ) |
| 12 | 6 | nvgrp | ⊢ ( 𝑈 ∈ NrmCVec → ( +𝑣 ‘ 𝑈 ) ∈ GrpOp ) |
| 13 | 1 6 | bafval | ⊢ 𝑋 = ran ( +𝑣 ‘ 𝑈 ) |
| 14 | 13 7 | grpo2inv | ⊢ ( ( ( +𝑣 ‘ 𝑈 ) ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ 𝐴 ) ) = 𝐴 ) |
| 15 | 12 14 | sylan | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ ( ( inv ‘ ( +𝑣 ‘ 𝑈 ) ) ‘ 𝐴 ) ) = 𝐴 ) |
| 16 | 9 11 15 | 3eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 ( - 1 𝑆 𝐴 ) ) = 𝐴 ) |