This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that a subset has an empty interior. (Contributed by NM, 3-Oct-2007) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | ntreq0 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑥 ⊆ 𝑆 → 𝑥 = ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | ntrval | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
| 3 | 2 | eqeq1d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ↔ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) = ∅ ) ) |
| 4 | neq0 | ⊢ ( ¬ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) = ∅ ↔ ∃ 𝑦 𝑦 ∈ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) | |
| 5 | 4 | con1bii | ⊢ ( ¬ ∃ 𝑦 𝑦 ∈ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ↔ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) = ∅ ) |
| 6 | ancom | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ) ↔ ( 𝑥 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑥 ) ) | |
| 7 | elin | ⊢ ( 𝑥 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ↔ ( 𝑥 ∈ 𝐽 ∧ 𝑥 ∈ 𝒫 𝑆 ) ) | |
| 8 | 7 | anbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑥 ) ↔ ( ( 𝑥 ∈ 𝐽 ∧ 𝑥 ∈ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑥 ) ) |
| 9 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑥 ∈ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝐽 ∧ ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ) ) | |
| 10 | 6 8 9 | 3bitri | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ) ↔ ( 𝑥 ∈ 𝐽 ∧ ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 11 | 10 | exbii | ⊢ ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐽 ∧ ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 12 | eluni | ⊢ ( 𝑦 ∈ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ) ) | |
| 13 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐽 ∧ ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ) ) | |
| 14 | 11 12 13 | 3bitr4i | ⊢ ( 𝑦 ∈ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ) |
| 15 | 14 | exbii | ⊢ ( ∃ 𝑦 𝑦 ∈ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ) |
| 16 | rexcom4 | ⊢ ( ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ) | |
| 17 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ↔ ( 𝑥 ∈ 𝒫 𝑆 ∧ ∃ 𝑦 𝑦 ∈ 𝑥 ) ) | |
| 18 | 17 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ( 𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 ∧ ∃ 𝑦 𝑦 ∈ 𝑥 ) ) |
| 19 | 15 16 18 | 3bitr2i | ⊢ ( ∃ 𝑦 𝑦 ∈ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 ∧ ∃ 𝑦 𝑦 ∈ 𝑥 ) ) |
| 20 | 19 | notbii | ⊢ ( ¬ ∃ 𝑦 𝑦 ∈ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ↔ ¬ ∃ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 ∧ ∃ 𝑦 𝑦 ∈ 𝑥 ) ) |
| 21 | 5 20 | bitr3i | ⊢ ( ∪ ( 𝐽 ∩ 𝒫 𝑆 ) = ∅ ↔ ¬ ∃ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 ∧ ∃ 𝑦 𝑦 ∈ 𝑥 ) ) |
| 22 | ralinexa | ⊢ ( ∀ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 → ¬ ∃ 𝑦 𝑦 ∈ 𝑥 ) ↔ ¬ ∃ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 ∧ ∃ 𝑦 𝑦 ∈ 𝑥 ) ) | |
| 23 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝑆 ↔ 𝑥 ⊆ 𝑆 ) | |
| 24 | neq0 | ⊢ ( ¬ 𝑥 = ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) | |
| 25 | 24 | con1bii | ⊢ ( ¬ ∃ 𝑦 𝑦 ∈ 𝑥 ↔ 𝑥 = ∅ ) |
| 26 | 23 25 | imbi12i | ⊢ ( ( 𝑥 ∈ 𝒫 𝑆 → ¬ ∃ 𝑦 𝑦 ∈ 𝑥 ) ↔ ( 𝑥 ⊆ 𝑆 → 𝑥 = ∅ ) ) |
| 27 | 26 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐽 ( 𝑥 ∈ 𝒫 𝑆 → ¬ ∃ 𝑦 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑥 ⊆ 𝑆 → 𝑥 = ∅ ) ) |
| 28 | 21 22 27 | 3bitr2i | ⊢ ( ∪ ( 𝐽 ∩ 𝒫 𝑆 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑥 ⊆ 𝑆 → 𝑥 = ∅ ) ) |
| 29 | 3 28 | bitrdi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑥 ⊆ 𝑆 → 𝑥 = ∅ ) ) ) |