This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of Munkres p. 94. (Contributed by NM, 10-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | ntrval | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | ntrfval | ⊢ ( 𝐽 ∈ Top → ( int ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) ) |
| 3 | 2 | fveq1d | ⊢ ( 𝐽 ∈ Top → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( ( 𝑥 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) ‘ 𝑆 ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( ( 𝑥 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) ‘ 𝑆 ) ) |
| 5 | eqid | ⊢ ( 𝑥 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) | |
| 6 | pweq | ⊢ ( 𝑥 = 𝑆 → 𝒫 𝑥 = 𝒫 𝑆 ) | |
| 7 | 6 | ineq2d | ⊢ ( 𝑥 = 𝑆 → ( 𝐽 ∩ 𝒫 𝑥 ) = ( 𝐽 ∩ 𝒫 𝑆 ) ) |
| 8 | 7 | unieqd | ⊢ ( 𝑥 = 𝑆 → ∪ ( 𝐽 ∩ 𝒫 𝑥 ) = ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
| 9 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 10 | elpw2g | ⊢ ( 𝑋 ∈ 𝐽 → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
| 12 | 11 | biimpar | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ∈ 𝒫 𝑋 ) |
| 13 | inex1g | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ∩ 𝒫 𝑆 ) ∈ V ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐽 ∩ 𝒫 𝑆 ) ∈ V ) |
| 15 | 14 | uniexd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ∈ V ) |
| 16 | 5 8 12 15 | fvmptd3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑥 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) ‘ 𝑆 ) = ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
| 17 | 4 16 | eqtrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |