This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Defining property of a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnsg.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| isnsg.2 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | nsgbi | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 + 𝐵 ) ∈ 𝑆 ↔ ( 𝐵 + 𝐴 ) ∈ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnsg.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | isnsg.2 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | 1 2 | isnsg | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |
| 4 | 3 | simprbi | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) |
| 5 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 + 𝑦 ) = ( 𝐴 + 𝑦 ) ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝐴 + 𝑦 ) ∈ 𝑆 ) ) |
| 7 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑦 + 𝑥 ) = ( 𝑦 + 𝐴 ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 + 𝑥 ) ∈ 𝑆 ↔ ( 𝑦 + 𝐴 ) ∈ 𝑆 ) ) |
| 9 | 6 8 | bibi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ↔ ( ( 𝐴 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝐴 ) ∈ 𝑆 ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 + 𝑦 ) = ( 𝐴 + 𝐵 ) ) | |
| 11 | 10 | eleq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 + 𝑦 ) ∈ 𝑆 ↔ ( 𝐴 + 𝐵 ) ∈ 𝑆 ) ) |
| 12 | oveq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 + 𝐴 ) = ( 𝐵 + 𝐴 ) ) | |
| 13 | 12 | eleq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 + 𝐴 ) ∈ 𝑆 ↔ ( 𝐵 + 𝐴 ) ∈ 𝑆 ) ) |
| 14 | 11 13 | bibi12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝐴 ) ∈ 𝑆 ) ↔ ( ( 𝐴 + 𝐵 ) ∈ 𝑆 ↔ ( 𝐵 + 𝐴 ) ∈ 𝑆 ) ) ) |
| 15 | 9 14 | rspc2v | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) → ( ( 𝐴 + 𝐵 ) ∈ 𝑆 ↔ ( 𝐵 + 𝐴 ) ∈ 𝑆 ) ) ) |
| 16 | 4 15 | syl5com | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 + 𝐵 ) ∈ 𝑆 ↔ ( 𝐵 + 𝐴 ) ∈ 𝑆 ) ) ) |
| 17 | 16 | 3impib | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 + 𝐵 ) ∈ 𝑆 ↔ ( 𝐵 + 𝐴 ) ∈ 𝑆 ) ) |