This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The induced metric of a normed group is a function. (Contributed by AV, 19-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngngpim.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| tngngpim.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | ||
| tngngpim.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| tngngpim.d | ⊢ 𝐷 = ( dist ‘ 𝑇 ) | ||
| Assertion | tngngpim | ⊢ ( 𝐺 ∈ NrmGrp → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngngpim.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| 2 | tngngpim.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 3 | tngngpim.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 4 | tngngpim.d | ⊢ 𝐷 = ( dist ‘ 𝑇 ) | |
| 5 | 3 2 | nmf | ⊢ ( 𝐺 ∈ NrmGrp → 𝑁 : 𝑋 ⟶ ℝ ) |
| 6 | 2 | oveq2i | ⊢ ( 𝐺 toNrmGrp 𝑁 ) = ( 𝐺 toNrmGrp ( norm ‘ 𝐺 ) ) |
| 7 | 1 6 | eqtri | ⊢ 𝑇 = ( 𝐺 toNrmGrp ( norm ‘ 𝐺 ) ) |
| 8 | 7 | nrmtngnrm | ⊢ ( 𝐺 ∈ NrmGrp → ( 𝑇 ∈ NrmGrp ∧ ( norm ‘ 𝑇 ) = ( norm ‘ 𝐺 ) ) ) |
| 9 | 1 3 4 | tngngp2 | ⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) ) |
| 10 | simpr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 11 | 9 10 | biimtrdi | ⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑇 ∈ NrmGrp → 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
| 12 | 11 | com12 | ⊢ ( 𝑇 ∈ NrmGrp → ( 𝑁 : 𝑋 ⟶ ℝ → 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( norm ‘ 𝑇 ) = ( norm ‘ 𝐺 ) ) → ( 𝑁 : 𝑋 ⟶ ℝ → 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
| 14 | 8 13 | syl | ⊢ ( 𝐺 ∈ NrmGrp → ( 𝑁 : 𝑋 ⟶ ℝ → 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
| 15 | metf | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) | |
| 16 | 14 15 | syl6 | ⊢ ( 𝐺 ∈ NrmGrp → ( 𝑁 : 𝑋 ⟶ ℝ → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ) |
| 17 | 5 16 | mpd | ⊢ ( 𝐺 ∈ NrmGrp → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |