This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a normal space, any two disjoint closed sets have the property that each one is a subset of an open set whose closure is disjoint from the other. (Contributed by Jeff Hankins, 1-Feb-2010) (Revised by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nrmsep2 | |- ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> E. x e. J ( C C_ x /\ ( ( ( cls ` J ) ` x ) i^i D ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> J e. Nrm ) |
|
| 2 | simpr2 | |- ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> D e. ( Clsd ` J ) ) |
|
| 3 | eqid | |- U. J = U. J |
|
| 4 | 3 | cldopn | |- ( D e. ( Clsd ` J ) -> ( U. J \ D ) e. J ) |
| 5 | 2 4 | syl | |- ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> ( U. J \ D ) e. J ) |
| 6 | simpr1 | |- ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> C e. ( Clsd ` J ) ) |
|
| 7 | simpr3 | |- ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> ( C i^i D ) = (/) ) |
|
| 8 | 3 | cldss | |- ( C e. ( Clsd ` J ) -> C C_ U. J ) |
| 9 | reldisj | |- ( C C_ U. J -> ( ( C i^i D ) = (/) <-> C C_ ( U. J \ D ) ) ) |
|
| 10 | 6 8 9 | 3syl | |- ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> ( ( C i^i D ) = (/) <-> C C_ ( U. J \ D ) ) ) |
| 11 | 7 10 | mpbid | |- ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> C C_ ( U. J \ D ) ) |
| 12 | nrmsep3 | |- ( ( J e. Nrm /\ ( ( U. J \ D ) e. J /\ C e. ( Clsd ` J ) /\ C C_ ( U. J \ D ) ) ) -> E. x e. J ( C C_ x /\ ( ( cls ` J ) ` x ) C_ ( U. J \ D ) ) ) |
|
| 13 | 1 5 6 11 12 | syl13anc | |- ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> E. x e. J ( C C_ x /\ ( ( cls ` J ) ` x ) C_ ( U. J \ D ) ) ) |
| 14 | ssdifin0 | |- ( ( ( cls ` J ) ` x ) C_ ( U. J \ D ) -> ( ( ( cls ` J ) ` x ) i^i D ) = (/) ) |
|
| 15 | 14 | anim2i | |- ( ( C C_ x /\ ( ( cls ` J ) ` x ) C_ ( U. J \ D ) ) -> ( C C_ x /\ ( ( ( cls ` J ) ` x ) i^i D ) = (/) ) ) |
| 16 | 15 | reximi | |- ( E. x e. J ( C C_ x /\ ( ( cls ` J ) ` x ) C_ ( U. J \ D ) ) -> E. x e. J ( C C_ x /\ ( ( ( cls ` J ) ` x ) i^i D ) = (/) ) ) |
| 17 | 13 16 | syl | |- ( ( J e. Nrm /\ ( C e. ( Clsd ` J ) /\ D e. ( Clsd ` J ) /\ ( C i^i D ) = (/) ) ) -> E. x e. J ( C C_ x /\ ( ( ( cls ` J ) ` x ) i^i D ) = (/) ) ) |