This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normal R_0 space is also regular. These spaces are usually referred to as normal regular spaces. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nrmr0reg | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) → 𝐽 ∈ Reg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrmtop | ⊢ ( 𝐽 ∈ Nrm → 𝐽 ∈ Top ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) → 𝐽 ∈ Top ) |
| 3 | simpll | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) → 𝐽 ∈ Nrm ) | |
| 4 | simprl | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑥 ∈ 𝐽 ) | |
| 5 | 2 | adantr | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) → 𝐽 ∈ Top ) |
| 6 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 7 | 5 6 | sylib | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 8 | simplr | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) → ( KQ ‘ 𝐽 ) ∈ Fre ) | |
| 9 | simprr | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑦 ∈ 𝑥 ) | |
| 10 | elunii | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐽 ) → 𝑦 ∈ ∪ 𝐽 ) | |
| 11 | 9 4 10 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑦 ∈ ∪ 𝐽 ) |
| 12 | eqid | ⊢ ( 𝑧 ∈ ∪ 𝐽 ↦ { 𝑤 ∈ 𝐽 ∣ 𝑧 ∈ 𝑤 } ) = ( 𝑧 ∈ ∪ 𝐽 ↦ { 𝑤 ∈ 𝐽 ∣ 𝑧 ∈ 𝑤 } ) | |
| 13 | 12 | r0cld | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ∧ 𝑦 ∈ ∪ 𝐽 ) → { 𝑎 ∈ ∪ 𝐽 ∣ ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) } ∈ ( Clsd ‘ 𝐽 ) ) |
| 14 | 7 8 11 13 | syl3anc | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) → { 𝑎 ∈ ∪ 𝐽 ∣ ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) } ∈ ( Clsd ‘ 𝐽 ) ) |
| 15 | simp1rr | ⊢ ( ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) ∧ 𝑎 ∈ ∪ 𝐽 ∧ ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) ) → 𝑦 ∈ 𝑥 ) | |
| 16 | 4 | adantr | ⊢ ( ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) ∧ 𝑎 ∈ ∪ 𝐽 ) → 𝑥 ∈ 𝐽 ) |
| 17 | elequ2 | ⊢ ( 𝑏 = 𝑥 → ( 𝑎 ∈ 𝑏 ↔ 𝑎 ∈ 𝑥 ) ) | |
| 18 | elequ2 | ⊢ ( 𝑏 = 𝑥 → ( 𝑦 ∈ 𝑏 ↔ 𝑦 ∈ 𝑥 ) ) | |
| 19 | 17 18 | bibi12d | ⊢ ( 𝑏 = 𝑥 → ( ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) ↔ ( 𝑎 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) ) |
| 20 | 19 | rspcv | ⊢ ( 𝑥 ∈ 𝐽 → ( ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) → ( 𝑎 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) ) |
| 21 | 16 20 | syl | ⊢ ( ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) ∧ 𝑎 ∈ ∪ 𝐽 ) → ( ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) → ( 𝑎 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) ) |
| 22 | 21 | 3impia | ⊢ ( ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) ∧ 𝑎 ∈ ∪ 𝐽 ∧ ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) ) → ( 𝑎 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
| 23 | 15 22 | mpbird | ⊢ ( ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) ∧ 𝑎 ∈ ∪ 𝐽 ∧ ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) ) → 𝑎 ∈ 𝑥 ) |
| 24 | 23 | rabssdv | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) → { 𝑎 ∈ ∪ 𝐽 ∣ ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) } ⊆ 𝑥 ) |
| 25 | nrmsep3 | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( 𝑥 ∈ 𝐽 ∧ { 𝑎 ∈ ∪ 𝐽 ∣ ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) } ∈ ( Clsd ‘ 𝐽 ) ∧ { 𝑎 ∈ ∪ 𝐽 ∣ ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) } ⊆ 𝑥 ) ) → ∃ 𝑧 ∈ 𝐽 ( { 𝑎 ∈ ∪ 𝐽 ∣ ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) } ⊆ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) | |
| 26 | 3 4 14 24 25 | syl13anc | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) → ∃ 𝑧 ∈ 𝐽 ( { 𝑎 ∈ ∪ 𝐽 ∣ ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) } ⊆ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) |
| 27 | elequ1 | ⊢ ( 𝑎 = 𝑦 → ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) ) | |
| 28 | 27 | bibi1d | ⊢ ( 𝑎 = 𝑦 → ( ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) ↔ ( 𝑦 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) ) ) |
| 29 | 28 | ralbidv | ⊢ ( 𝑎 = 𝑦 → ( ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) ↔ ∀ 𝑏 ∈ 𝐽 ( 𝑦 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) ) ) |
| 30 | biidd | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝑦 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) ) | |
| 31 | 30 | ralrimivw | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) → ∀ 𝑏 ∈ 𝐽 ( 𝑦 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) ) |
| 32 | 29 11 31 | elrabd | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) → 𝑦 ∈ { 𝑎 ∈ ∪ 𝐽 ∣ ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) } ) |
| 33 | ssel | ⊢ ( { 𝑎 ∈ ∪ 𝐽 ∣ ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) } ⊆ 𝑧 → ( 𝑦 ∈ { 𝑎 ∈ ∪ 𝐽 ∣ ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) } → 𝑦 ∈ 𝑧 ) ) | |
| 34 | 32 33 | syl5com | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) → ( { 𝑎 ∈ ∪ 𝐽 ∣ ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) } ⊆ 𝑧 → 𝑦 ∈ 𝑧 ) ) |
| 35 | 34 | anim1d | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) → ( ( { 𝑎 ∈ ∪ 𝐽 ∣ ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) } ⊆ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) → ( 𝑦 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) ) |
| 36 | 35 | reximdv | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) → ( ∃ 𝑧 ∈ 𝐽 ( { 𝑎 ∈ ∪ 𝐽 ∣ ∀ 𝑏 ∈ 𝐽 ( 𝑎 ∈ 𝑏 ↔ 𝑦 ∈ 𝑏 ) } ⊆ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) → ∃ 𝑧 ∈ 𝐽 ( 𝑦 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) ) |
| 37 | 26 36 | mpd | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥 ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝑦 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) |
| 38 | 37 | ralrimivva | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) → ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐽 ( 𝑦 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) |
| 39 | isreg | ⊢ ( 𝐽 ∈ Reg ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐽 ( 𝑦 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) ) | |
| 40 | 2 38 39 | sylanbrc | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) → 𝐽 ∈ Reg ) |