This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 21-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem1.1 | ⊢ 𝑆 ∈ ℂ | |
| normlem1.2 | ⊢ 𝐹 ∈ ℋ | ||
| normlem1.3 | ⊢ 𝐺 ∈ ℋ | ||
| normlem2.4 | ⊢ 𝐵 = - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) | ||
| normlem3.5 | ⊢ 𝐴 = ( 𝐺 ·ih 𝐺 ) | ||
| normlem3.6 | ⊢ 𝐶 = ( 𝐹 ·ih 𝐹 ) | ||
| normlem3.7 | ⊢ 𝑅 ∈ ℝ | ||
| Assertion | normlem3 | ⊢ ( ( ( 𝐴 · ( 𝑅 ↑ 2 ) ) + ( 𝐵 · 𝑅 ) ) + 𝐶 ) = ( ( ( 𝐹 ·ih 𝐹 ) + ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) ) + ( ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem1.1 | ⊢ 𝑆 ∈ ℂ | |
| 2 | normlem1.2 | ⊢ 𝐹 ∈ ℋ | |
| 3 | normlem1.3 | ⊢ 𝐺 ∈ ℋ | |
| 4 | normlem2.4 | ⊢ 𝐵 = - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) | |
| 5 | normlem3.5 | ⊢ 𝐴 = ( 𝐺 ·ih 𝐺 ) | |
| 6 | normlem3.6 | ⊢ 𝐶 = ( 𝐹 ·ih 𝐹 ) | |
| 7 | normlem3.7 | ⊢ 𝑅 ∈ ℝ | |
| 8 | 3 3 | hicli | ⊢ ( 𝐺 ·ih 𝐺 ) ∈ ℂ |
| 9 | 5 8 | eqeltri | ⊢ 𝐴 ∈ ℂ |
| 10 | 7 | recni | ⊢ 𝑅 ∈ ℂ |
| 11 | 10 | sqcli | ⊢ ( 𝑅 ↑ 2 ) ∈ ℂ |
| 12 | 9 11 | mulcli | ⊢ ( 𝐴 · ( 𝑅 ↑ 2 ) ) ∈ ℂ |
| 13 | 1 2 3 4 | normlem2 | ⊢ 𝐵 ∈ ℝ |
| 14 | 13 | recni | ⊢ 𝐵 ∈ ℂ |
| 15 | 14 10 | mulcli | ⊢ ( 𝐵 · 𝑅 ) ∈ ℂ |
| 16 | 12 15 | addcomi | ⊢ ( ( 𝐴 · ( 𝑅 ↑ 2 ) ) + ( 𝐵 · 𝑅 ) ) = ( ( 𝐵 · 𝑅 ) + ( 𝐴 · ( 𝑅 ↑ 2 ) ) ) |
| 17 | 1 | cjcli | ⊢ ( ∗ ‘ 𝑆 ) ∈ ℂ |
| 18 | 2 3 | hicli | ⊢ ( 𝐹 ·ih 𝐺 ) ∈ ℂ |
| 19 | 17 18 | mulcli | ⊢ ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ∈ ℂ |
| 20 | 3 2 | hicli | ⊢ ( 𝐺 ·ih 𝐹 ) ∈ ℂ |
| 21 | 1 20 | mulcli | ⊢ ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ∈ ℂ |
| 22 | 19 21 | addcli | ⊢ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℂ |
| 23 | 22 10 | mulneg1i | ⊢ ( - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) · 𝑅 ) = - ( ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) · 𝑅 ) |
| 24 | 4 | oveq1i | ⊢ ( 𝐵 · 𝑅 ) = ( - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) · 𝑅 ) |
| 25 | 22 10 | mulneg2i | ⊢ ( ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) · - 𝑅 ) = - ( ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) · 𝑅 ) |
| 26 | 23 24 25 | 3eqtr4i | ⊢ ( 𝐵 · 𝑅 ) = ( ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) · - 𝑅 ) |
| 27 | 10 | negcli | ⊢ - 𝑅 ∈ ℂ |
| 28 | 19 21 27 | adddiri | ⊢ ( ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) · - 𝑅 ) = ( ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) · - 𝑅 ) + ( ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) · - 𝑅 ) ) |
| 29 | 17 18 27 | mul32i | ⊢ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) · - 𝑅 ) = ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) |
| 30 | 1 20 27 | mul32i | ⊢ ( ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) · - 𝑅 ) = ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) |
| 31 | 29 30 | oveq12i | ⊢ ( ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) · - 𝑅 ) + ( ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) · - 𝑅 ) ) = ( ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) + ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) ) |
| 32 | 26 28 31 | 3eqtri | ⊢ ( 𝐵 · 𝑅 ) = ( ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) + ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) ) |
| 33 | 5 | oveq2i | ⊢ ( ( 𝑅 ↑ 2 ) · 𝐴 ) = ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) |
| 34 | 11 9 33 | mulcomli | ⊢ ( 𝐴 · ( 𝑅 ↑ 2 ) ) = ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) |
| 35 | 32 34 | oveq12i | ⊢ ( ( 𝐵 · 𝑅 ) + ( 𝐴 · ( 𝑅 ↑ 2 ) ) ) = ( ( ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) + ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) ) + ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) ) |
| 36 | 17 27 | mulcli | ⊢ ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) ∈ ℂ |
| 37 | 36 18 | mulcli | ⊢ ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) ∈ ℂ |
| 38 | 1 27 | mulcli | ⊢ ( 𝑆 · - 𝑅 ) ∈ ℂ |
| 39 | 38 20 | mulcli | ⊢ ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) ∈ ℂ |
| 40 | 11 8 | mulcli | ⊢ ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) ∈ ℂ |
| 41 | 37 39 40 | addassi | ⊢ ( ( ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) + ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) ) + ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) ) = ( ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) + ( ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) ) ) |
| 42 | 16 35 41 | 3eqtri | ⊢ ( ( 𝐴 · ( 𝑅 ↑ 2 ) ) + ( 𝐵 · 𝑅 ) ) = ( ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) + ( ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) ) ) |
| 43 | 6 42 | oveq12i | ⊢ ( 𝐶 + ( ( 𝐴 · ( 𝑅 ↑ 2 ) ) + ( 𝐵 · 𝑅 ) ) ) = ( ( 𝐹 ·ih 𝐹 ) + ( ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) + ( ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) ) ) ) |
| 44 | 12 15 | addcli | ⊢ ( ( 𝐴 · ( 𝑅 ↑ 2 ) ) + ( 𝐵 · 𝑅 ) ) ∈ ℂ |
| 45 | 2 2 | hicli | ⊢ ( 𝐹 ·ih 𝐹 ) ∈ ℂ |
| 46 | 6 45 | eqeltri | ⊢ 𝐶 ∈ ℂ |
| 47 | 44 46 | addcomi | ⊢ ( ( ( 𝐴 · ( 𝑅 ↑ 2 ) ) + ( 𝐵 · 𝑅 ) ) + 𝐶 ) = ( 𝐶 + ( ( 𝐴 · ( 𝑅 ↑ 2 ) ) + ( 𝐵 · 𝑅 ) ) ) |
| 48 | 39 40 | addcli | ⊢ ( ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) ) ∈ ℂ |
| 49 | 45 37 48 | addassi | ⊢ ( ( ( 𝐹 ·ih 𝐹 ) + ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) ) + ( ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) ) ) = ( ( 𝐹 ·ih 𝐹 ) + ( ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) + ( ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) ) ) ) |
| 50 | 43 47 49 | 3eqtr4i | ⊢ ( ( ( 𝐴 · ( 𝑅 ↑ 2 ) ) + ( 𝐵 · 𝑅 ) ) + 𝐶 ) = ( ( ( 𝐹 ·ih 𝐹 ) + ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) ) + ( ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) ) ) |