This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 7-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem1.1 | ⊢ 𝑆 ∈ ℂ | |
| normlem1.2 | ⊢ 𝐹 ∈ ℋ | ||
| normlem1.3 | ⊢ 𝐺 ∈ ℋ | ||
| Assertion | normlem0 | ⊢ ( ( 𝐹 −ℎ ( 𝑆 ·ℎ 𝐺 ) ) ·ih ( 𝐹 −ℎ ( 𝑆 ·ℎ 𝐺 ) ) ) = ( ( ( 𝐹 ·ih 𝐹 ) + ( - ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) + ( ( - 𝑆 · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑆 · ( ∗ ‘ 𝑆 ) ) · ( 𝐺 ·ih 𝐺 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem1.1 | ⊢ 𝑆 ∈ ℂ | |
| 2 | normlem1.2 | ⊢ 𝐹 ∈ ℋ | |
| 3 | normlem1.3 | ⊢ 𝐺 ∈ ℋ | |
| 4 | 1 3 | hvmulcli | ⊢ ( 𝑆 ·ℎ 𝐺 ) ∈ ℋ |
| 5 | 2 4 | hvsubvali | ⊢ ( 𝐹 −ℎ ( 𝑆 ·ℎ 𝐺 ) ) = ( 𝐹 +ℎ ( - 1 ·ℎ ( 𝑆 ·ℎ 𝐺 ) ) ) |
| 6 | 1 | mulm1i | ⊢ ( - 1 · 𝑆 ) = - 𝑆 |
| 7 | 6 | oveq1i | ⊢ ( ( - 1 · 𝑆 ) ·ℎ 𝐺 ) = ( - 𝑆 ·ℎ 𝐺 ) |
| 8 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 9 | 8 1 3 | hvmulassi | ⊢ ( ( - 1 · 𝑆 ) ·ℎ 𝐺 ) = ( - 1 ·ℎ ( 𝑆 ·ℎ 𝐺 ) ) |
| 10 | 7 9 | eqtr3i | ⊢ ( - 𝑆 ·ℎ 𝐺 ) = ( - 1 ·ℎ ( 𝑆 ·ℎ 𝐺 ) ) |
| 11 | 10 | oveq2i | ⊢ ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) = ( 𝐹 +ℎ ( - 1 ·ℎ ( 𝑆 ·ℎ 𝐺 ) ) ) |
| 12 | 5 11 | eqtr4i | ⊢ ( 𝐹 −ℎ ( 𝑆 ·ℎ 𝐺 ) ) = ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) |
| 13 | 12 12 | oveq12i | ⊢ ( ( 𝐹 −ℎ ( 𝑆 ·ℎ 𝐺 ) ) ·ih ( 𝐹 −ℎ ( 𝑆 ·ℎ 𝐺 ) ) ) = ( ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) |
| 14 | 1 | negcli | ⊢ - 𝑆 ∈ ℂ |
| 15 | 14 3 | hvmulcli | ⊢ ( - 𝑆 ·ℎ 𝐺 ) ∈ ℋ |
| 16 | 2 15 | hvaddcli | ⊢ ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ∈ ℋ |
| 17 | ax-his2 | ⊢ ( ( 𝐹 ∈ ℋ ∧ ( - 𝑆 ·ℎ 𝐺 ) ∈ ℋ ∧ ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ∈ ℋ ) → ( ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) = ( ( 𝐹 ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) + ( ( - 𝑆 ·ℎ 𝐺 ) ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) ) ) | |
| 18 | 2 15 16 17 | mp3an | ⊢ ( ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) = ( ( 𝐹 ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) + ( ( - 𝑆 ·ℎ 𝐺 ) ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) ) |
| 19 | his7 | ⊢ ( ( 𝐹 ∈ ℋ ∧ 𝐹 ∈ ℋ ∧ ( - 𝑆 ·ℎ 𝐺 ) ∈ ℋ ) → ( 𝐹 ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) = ( ( 𝐹 ·ih 𝐹 ) + ( 𝐹 ·ih ( - 𝑆 ·ℎ 𝐺 ) ) ) ) | |
| 20 | 2 2 15 19 | mp3an | ⊢ ( 𝐹 ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) = ( ( 𝐹 ·ih 𝐹 ) + ( 𝐹 ·ih ( - 𝑆 ·ℎ 𝐺 ) ) ) |
| 21 | his5 | ⊢ ( ( - 𝑆 ∈ ℂ ∧ 𝐹 ∈ ℋ ∧ 𝐺 ∈ ℋ ) → ( 𝐹 ·ih ( - 𝑆 ·ℎ 𝐺 ) ) = ( ( ∗ ‘ - 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) | |
| 22 | 14 2 3 21 | mp3an | ⊢ ( 𝐹 ·ih ( - 𝑆 ·ℎ 𝐺 ) ) = ( ( ∗ ‘ - 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) |
| 23 | 1 | cjnegi | ⊢ ( ∗ ‘ - 𝑆 ) = - ( ∗ ‘ 𝑆 ) |
| 24 | 23 | oveq1i | ⊢ ( ( ∗ ‘ - 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) = ( - ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) |
| 25 | 22 24 | eqtri | ⊢ ( 𝐹 ·ih ( - 𝑆 ·ℎ 𝐺 ) ) = ( - ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) |
| 26 | 25 | oveq2i | ⊢ ( ( 𝐹 ·ih 𝐹 ) + ( 𝐹 ·ih ( - 𝑆 ·ℎ 𝐺 ) ) ) = ( ( 𝐹 ·ih 𝐹 ) + ( - ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) |
| 27 | 20 26 | eqtri | ⊢ ( 𝐹 ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) = ( ( 𝐹 ·ih 𝐹 ) + ( - ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) |
| 28 | ax-his3 | ⊢ ( ( - 𝑆 ∈ ℂ ∧ 𝐺 ∈ ℋ ∧ ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ∈ ℋ ) → ( ( - 𝑆 ·ℎ 𝐺 ) ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) = ( - 𝑆 · ( 𝐺 ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) ) ) | |
| 29 | 14 3 16 28 | mp3an | ⊢ ( ( - 𝑆 ·ℎ 𝐺 ) ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) = ( - 𝑆 · ( 𝐺 ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) ) |
| 30 | his7 | ⊢ ( ( 𝐺 ∈ ℋ ∧ 𝐹 ∈ ℋ ∧ ( - 𝑆 ·ℎ 𝐺 ) ∈ ℋ ) → ( 𝐺 ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) = ( ( 𝐺 ·ih 𝐹 ) + ( 𝐺 ·ih ( - 𝑆 ·ℎ 𝐺 ) ) ) ) | |
| 31 | 3 2 15 30 | mp3an | ⊢ ( 𝐺 ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) = ( ( 𝐺 ·ih 𝐹 ) + ( 𝐺 ·ih ( - 𝑆 ·ℎ 𝐺 ) ) ) |
| 32 | his5 | ⊢ ( ( - 𝑆 ∈ ℂ ∧ 𝐺 ∈ ℋ ∧ 𝐺 ∈ ℋ ) → ( 𝐺 ·ih ( - 𝑆 ·ℎ 𝐺 ) ) = ( ( ∗ ‘ - 𝑆 ) · ( 𝐺 ·ih 𝐺 ) ) ) | |
| 33 | 14 3 3 32 | mp3an | ⊢ ( 𝐺 ·ih ( - 𝑆 ·ℎ 𝐺 ) ) = ( ( ∗ ‘ - 𝑆 ) · ( 𝐺 ·ih 𝐺 ) ) |
| 34 | 33 | oveq2i | ⊢ ( ( 𝐺 ·ih 𝐹 ) + ( 𝐺 ·ih ( - 𝑆 ·ℎ 𝐺 ) ) ) = ( ( 𝐺 ·ih 𝐹 ) + ( ( ∗ ‘ - 𝑆 ) · ( 𝐺 ·ih 𝐺 ) ) ) |
| 35 | 31 34 | eqtri | ⊢ ( 𝐺 ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) = ( ( 𝐺 ·ih 𝐹 ) + ( ( ∗ ‘ - 𝑆 ) · ( 𝐺 ·ih 𝐺 ) ) ) |
| 36 | 35 | oveq2i | ⊢ ( - 𝑆 · ( 𝐺 ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) ) = ( - 𝑆 · ( ( 𝐺 ·ih 𝐹 ) + ( ( ∗ ‘ - 𝑆 ) · ( 𝐺 ·ih 𝐺 ) ) ) ) |
| 37 | 3 2 | hicli | ⊢ ( 𝐺 ·ih 𝐹 ) ∈ ℂ |
| 38 | 14 | cjcli | ⊢ ( ∗ ‘ - 𝑆 ) ∈ ℂ |
| 39 | 3 3 | hicli | ⊢ ( 𝐺 ·ih 𝐺 ) ∈ ℂ |
| 40 | 38 39 | mulcli | ⊢ ( ( ∗ ‘ - 𝑆 ) · ( 𝐺 ·ih 𝐺 ) ) ∈ ℂ |
| 41 | 14 37 40 | adddii | ⊢ ( - 𝑆 · ( ( 𝐺 ·ih 𝐹 ) + ( ( ∗ ‘ - 𝑆 ) · ( 𝐺 ·ih 𝐺 ) ) ) ) = ( ( - 𝑆 · ( 𝐺 ·ih 𝐹 ) ) + ( - 𝑆 · ( ( ∗ ‘ - 𝑆 ) · ( 𝐺 ·ih 𝐺 ) ) ) ) |
| 42 | 14 38 39 | mulassi | ⊢ ( ( - 𝑆 · ( ∗ ‘ - 𝑆 ) ) · ( 𝐺 ·ih 𝐺 ) ) = ( - 𝑆 · ( ( ∗ ‘ - 𝑆 ) · ( 𝐺 ·ih 𝐺 ) ) ) |
| 43 | 23 | oveq2i | ⊢ ( - 𝑆 · ( ∗ ‘ - 𝑆 ) ) = ( - 𝑆 · - ( ∗ ‘ 𝑆 ) ) |
| 44 | 1 | cjcli | ⊢ ( ∗ ‘ 𝑆 ) ∈ ℂ |
| 45 | 1 44 | mul2negi | ⊢ ( - 𝑆 · - ( ∗ ‘ 𝑆 ) ) = ( 𝑆 · ( ∗ ‘ 𝑆 ) ) |
| 46 | 43 45 | eqtri | ⊢ ( - 𝑆 · ( ∗ ‘ - 𝑆 ) ) = ( 𝑆 · ( ∗ ‘ 𝑆 ) ) |
| 47 | 46 | oveq1i | ⊢ ( ( - 𝑆 · ( ∗ ‘ - 𝑆 ) ) · ( 𝐺 ·ih 𝐺 ) ) = ( ( 𝑆 · ( ∗ ‘ 𝑆 ) ) · ( 𝐺 ·ih 𝐺 ) ) |
| 48 | 42 47 | eqtr3i | ⊢ ( - 𝑆 · ( ( ∗ ‘ - 𝑆 ) · ( 𝐺 ·ih 𝐺 ) ) ) = ( ( 𝑆 · ( ∗ ‘ 𝑆 ) ) · ( 𝐺 ·ih 𝐺 ) ) |
| 49 | 48 | oveq2i | ⊢ ( ( - 𝑆 · ( 𝐺 ·ih 𝐹 ) ) + ( - 𝑆 · ( ( ∗ ‘ - 𝑆 ) · ( 𝐺 ·ih 𝐺 ) ) ) ) = ( ( - 𝑆 · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑆 · ( ∗ ‘ 𝑆 ) ) · ( 𝐺 ·ih 𝐺 ) ) ) |
| 50 | 41 49 | eqtri | ⊢ ( - 𝑆 · ( ( 𝐺 ·ih 𝐹 ) + ( ( ∗ ‘ - 𝑆 ) · ( 𝐺 ·ih 𝐺 ) ) ) ) = ( ( - 𝑆 · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑆 · ( ∗ ‘ 𝑆 ) ) · ( 𝐺 ·ih 𝐺 ) ) ) |
| 51 | 29 36 50 | 3eqtri | ⊢ ( ( - 𝑆 ·ℎ 𝐺 ) ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) = ( ( - 𝑆 · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑆 · ( ∗ ‘ 𝑆 ) ) · ( 𝐺 ·ih 𝐺 ) ) ) |
| 52 | 27 51 | oveq12i | ⊢ ( ( 𝐹 ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) + ( ( - 𝑆 ·ℎ 𝐺 ) ·ih ( 𝐹 +ℎ ( - 𝑆 ·ℎ 𝐺 ) ) ) ) = ( ( ( 𝐹 ·ih 𝐹 ) + ( - ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) + ( ( - 𝑆 · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑆 · ( ∗ ‘ 𝑆 ) ) · ( 𝐺 ·ih 𝐺 ) ) ) ) |
| 53 | 13 18 52 | 3eqtri | ⊢ ( ( 𝐹 −ℎ ( 𝑆 ·ℎ 𝐺 ) ) ·ih ( 𝐹 −ℎ ( 𝑆 ·ℎ 𝐺 ) ) ) = ( ( ( 𝐹 ·ih 𝐹 ) + ( - ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) + ( ( - 𝑆 · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑆 · ( ∗ ‘ 𝑆 ) ) · ( 𝐺 ·ih 𝐺 ) ) ) ) |