This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 7-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem1.1 | |- S e. CC |
|
| normlem1.2 | |- F e. ~H |
||
| normlem1.3 | |- G e. ~H |
||
| Assertion | normlem0 | |- ( ( F -h ( S .h G ) ) .ih ( F -h ( S .h G ) ) ) = ( ( ( F .ih F ) + ( -u ( * ` S ) x. ( F .ih G ) ) ) + ( ( -u S x. ( G .ih F ) ) + ( ( S x. ( * ` S ) ) x. ( G .ih G ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem1.1 | |- S e. CC |
|
| 2 | normlem1.2 | |- F e. ~H |
|
| 3 | normlem1.3 | |- G e. ~H |
|
| 4 | 1 3 | hvmulcli | |- ( S .h G ) e. ~H |
| 5 | 2 4 | hvsubvali | |- ( F -h ( S .h G ) ) = ( F +h ( -u 1 .h ( S .h G ) ) ) |
| 6 | 1 | mulm1i | |- ( -u 1 x. S ) = -u S |
| 7 | 6 | oveq1i | |- ( ( -u 1 x. S ) .h G ) = ( -u S .h G ) |
| 8 | neg1cn | |- -u 1 e. CC |
|
| 9 | 8 1 3 | hvmulassi | |- ( ( -u 1 x. S ) .h G ) = ( -u 1 .h ( S .h G ) ) |
| 10 | 7 9 | eqtr3i | |- ( -u S .h G ) = ( -u 1 .h ( S .h G ) ) |
| 11 | 10 | oveq2i | |- ( F +h ( -u S .h G ) ) = ( F +h ( -u 1 .h ( S .h G ) ) ) |
| 12 | 5 11 | eqtr4i | |- ( F -h ( S .h G ) ) = ( F +h ( -u S .h G ) ) |
| 13 | 12 12 | oveq12i | |- ( ( F -h ( S .h G ) ) .ih ( F -h ( S .h G ) ) ) = ( ( F +h ( -u S .h G ) ) .ih ( F +h ( -u S .h G ) ) ) |
| 14 | 1 | negcli | |- -u S e. CC |
| 15 | 14 3 | hvmulcli | |- ( -u S .h G ) e. ~H |
| 16 | 2 15 | hvaddcli | |- ( F +h ( -u S .h G ) ) e. ~H |
| 17 | ax-his2 | |- ( ( F e. ~H /\ ( -u S .h G ) e. ~H /\ ( F +h ( -u S .h G ) ) e. ~H ) -> ( ( F +h ( -u S .h G ) ) .ih ( F +h ( -u S .h G ) ) ) = ( ( F .ih ( F +h ( -u S .h G ) ) ) + ( ( -u S .h G ) .ih ( F +h ( -u S .h G ) ) ) ) ) |
|
| 18 | 2 15 16 17 | mp3an | |- ( ( F +h ( -u S .h G ) ) .ih ( F +h ( -u S .h G ) ) ) = ( ( F .ih ( F +h ( -u S .h G ) ) ) + ( ( -u S .h G ) .ih ( F +h ( -u S .h G ) ) ) ) |
| 19 | his7 | |- ( ( F e. ~H /\ F e. ~H /\ ( -u S .h G ) e. ~H ) -> ( F .ih ( F +h ( -u S .h G ) ) ) = ( ( F .ih F ) + ( F .ih ( -u S .h G ) ) ) ) |
|
| 20 | 2 2 15 19 | mp3an | |- ( F .ih ( F +h ( -u S .h G ) ) ) = ( ( F .ih F ) + ( F .ih ( -u S .h G ) ) ) |
| 21 | his5 | |- ( ( -u S e. CC /\ F e. ~H /\ G e. ~H ) -> ( F .ih ( -u S .h G ) ) = ( ( * ` -u S ) x. ( F .ih G ) ) ) |
|
| 22 | 14 2 3 21 | mp3an | |- ( F .ih ( -u S .h G ) ) = ( ( * ` -u S ) x. ( F .ih G ) ) |
| 23 | 1 | cjnegi | |- ( * ` -u S ) = -u ( * ` S ) |
| 24 | 23 | oveq1i | |- ( ( * ` -u S ) x. ( F .ih G ) ) = ( -u ( * ` S ) x. ( F .ih G ) ) |
| 25 | 22 24 | eqtri | |- ( F .ih ( -u S .h G ) ) = ( -u ( * ` S ) x. ( F .ih G ) ) |
| 26 | 25 | oveq2i | |- ( ( F .ih F ) + ( F .ih ( -u S .h G ) ) ) = ( ( F .ih F ) + ( -u ( * ` S ) x. ( F .ih G ) ) ) |
| 27 | 20 26 | eqtri | |- ( F .ih ( F +h ( -u S .h G ) ) ) = ( ( F .ih F ) + ( -u ( * ` S ) x. ( F .ih G ) ) ) |
| 28 | ax-his3 | |- ( ( -u S e. CC /\ G e. ~H /\ ( F +h ( -u S .h G ) ) e. ~H ) -> ( ( -u S .h G ) .ih ( F +h ( -u S .h G ) ) ) = ( -u S x. ( G .ih ( F +h ( -u S .h G ) ) ) ) ) |
|
| 29 | 14 3 16 28 | mp3an | |- ( ( -u S .h G ) .ih ( F +h ( -u S .h G ) ) ) = ( -u S x. ( G .ih ( F +h ( -u S .h G ) ) ) ) |
| 30 | his7 | |- ( ( G e. ~H /\ F e. ~H /\ ( -u S .h G ) e. ~H ) -> ( G .ih ( F +h ( -u S .h G ) ) ) = ( ( G .ih F ) + ( G .ih ( -u S .h G ) ) ) ) |
|
| 31 | 3 2 15 30 | mp3an | |- ( G .ih ( F +h ( -u S .h G ) ) ) = ( ( G .ih F ) + ( G .ih ( -u S .h G ) ) ) |
| 32 | his5 | |- ( ( -u S e. CC /\ G e. ~H /\ G e. ~H ) -> ( G .ih ( -u S .h G ) ) = ( ( * ` -u S ) x. ( G .ih G ) ) ) |
|
| 33 | 14 3 3 32 | mp3an | |- ( G .ih ( -u S .h G ) ) = ( ( * ` -u S ) x. ( G .ih G ) ) |
| 34 | 33 | oveq2i | |- ( ( G .ih F ) + ( G .ih ( -u S .h G ) ) ) = ( ( G .ih F ) + ( ( * ` -u S ) x. ( G .ih G ) ) ) |
| 35 | 31 34 | eqtri | |- ( G .ih ( F +h ( -u S .h G ) ) ) = ( ( G .ih F ) + ( ( * ` -u S ) x. ( G .ih G ) ) ) |
| 36 | 35 | oveq2i | |- ( -u S x. ( G .ih ( F +h ( -u S .h G ) ) ) ) = ( -u S x. ( ( G .ih F ) + ( ( * ` -u S ) x. ( G .ih G ) ) ) ) |
| 37 | 3 2 | hicli | |- ( G .ih F ) e. CC |
| 38 | 14 | cjcli | |- ( * ` -u S ) e. CC |
| 39 | 3 3 | hicli | |- ( G .ih G ) e. CC |
| 40 | 38 39 | mulcli | |- ( ( * ` -u S ) x. ( G .ih G ) ) e. CC |
| 41 | 14 37 40 | adddii | |- ( -u S x. ( ( G .ih F ) + ( ( * ` -u S ) x. ( G .ih G ) ) ) ) = ( ( -u S x. ( G .ih F ) ) + ( -u S x. ( ( * ` -u S ) x. ( G .ih G ) ) ) ) |
| 42 | 14 38 39 | mulassi | |- ( ( -u S x. ( * ` -u S ) ) x. ( G .ih G ) ) = ( -u S x. ( ( * ` -u S ) x. ( G .ih G ) ) ) |
| 43 | 23 | oveq2i | |- ( -u S x. ( * ` -u S ) ) = ( -u S x. -u ( * ` S ) ) |
| 44 | 1 | cjcli | |- ( * ` S ) e. CC |
| 45 | 1 44 | mul2negi | |- ( -u S x. -u ( * ` S ) ) = ( S x. ( * ` S ) ) |
| 46 | 43 45 | eqtri | |- ( -u S x. ( * ` -u S ) ) = ( S x. ( * ` S ) ) |
| 47 | 46 | oveq1i | |- ( ( -u S x. ( * ` -u S ) ) x. ( G .ih G ) ) = ( ( S x. ( * ` S ) ) x. ( G .ih G ) ) |
| 48 | 42 47 | eqtr3i | |- ( -u S x. ( ( * ` -u S ) x. ( G .ih G ) ) ) = ( ( S x. ( * ` S ) ) x. ( G .ih G ) ) |
| 49 | 48 | oveq2i | |- ( ( -u S x. ( G .ih F ) ) + ( -u S x. ( ( * ` -u S ) x. ( G .ih G ) ) ) ) = ( ( -u S x. ( G .ih F ) ) + ( ( S x. ( * ` S ) ) x. ( G .ih G ) ) ) |
| 50 | 41 49 | eqtri | |- ( -u S x. ( ( G .ih F ) + ( ( * ` -u S ) x. ( G .ih G ) ) ) ) = ( ( -u S x. ( G .ih F ) ) + ( ( S x. ( * ` S ) ) x. ( G .ih G ) ) ) |
| 51 | 29 36 50 | 3eqtri | |- ( ( -u S .h G ) .ih ( F +h ( -u S .h G ) ) ) = ( ( -u S x. ( G .ih F ) ) + ( ( S x. ( * ` S ) ) x. ( G .ih G ) ) ) |
| 52 | 27 51 | oveq12i | |- ( ( F .ih ( F +h ( -u S .h G ) ) ) + ( ( -u S .h G ) .ih ( F +h ( -u S .h G ) ) ) ) = ( ( ( F .ih F ) + ( -u ( * ` S ) x. ( F .ih G ) ) ) + ( ( -u S x. ( G .ih F ) ) + ( ( S x. ( * ` S ) ) x. ( G .ih G ) ) ) ) |
| 53 | 13 18 52 | 3eqtri | |- ( ( F -h ( S .h G ) ) .ih ( F -h ( S .h G ) ) ) = ( ( ( F .ih F ) + ( -u ( * ` S ) x. ( F .ih G ) ) ) + ( ( -u S x. ( G .ih F ) ) + ( ( S x. ( * ` S ) ) x. ( G .ih G ) ) ) ) |