This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 22-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem1.1 | ⊢ 𝑆 ∈ ℂ | |
| normlem1.2 | ⊢ 𝐹 ∈ ℋ | ||
| normlem1.3 | ⊢ 𝐺 ∈ ℋ | ||
| normlem1.4 | ⊢ 𝑅 ∈ ℝ | ||
| normlem1.5 | ⊢ ( abs ‘ 𝑆 ) = 1 | ||
| Assertion | normlem1 | ⊢ ( ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ·ih ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ) = ( ( ( 𝐹 ·ih 𝐹 ) + ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) ) + ( ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem1.1 | ⊢ 𝑆 ∈ ℂ | |
| 2 | normlem1.2 | ⊢ 𝐹 ∈ ℋ | |
| 3 | normlem1.3 | ⊢ 𝐺 ∈ ℋ | |
| 4 | normlem1.4 | ⊢ 𝑅 ∈ ℝ | |
| 5 | normlem1.5 | ⊢ ( abs ‘ 𝑆 ) = 1 | |
| 6 | 4 | recni | ⊢ 𝑅 ∈ ℂ |
| 7 | 1 6 | mulcli | ⊢ ( 𝑆 · 𝑅 ) ∈ ℂ |
| 8 | 7 2 3 | normlem0 | ⊢ ( ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ·ih ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ) = ( ( ( 𝐹 ·ih 𝐹 ) + ( - ( ∗ ‘ ( 𝑆 · 𝑅 ) ) · ( 𝐹 ·ih 𝐺 ) ) ) + ( ( - ( 𝑆 · 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) + ( ( ( 𝑆 · 𝑅 ) · ( ∗ ‘ ( 𝑆 · 𝑅 ) ) ) · ( 𝐺 ·ih 𝐺 ) ) ) ) |
| 9 | 1 6 | cjmuli | ⊢ ( ∗ ‘ ( 𝑆 · 𝑅 ) ) = ( ( ∗ ‘ 𝑆 ) · ( ∗ ‘ 𝑅 ) ) |
| 10 | 6 | cjrebi | ⊢ ( 𝑅 ∈ ℝ ↔ ( ∗ ‘ 𝑅 ) = 𝑅 ) |
| 11 | 4 10 | mpbi | ⊢ ( ∗ ‘ 𝑅 ) = 𝑅 |
| 12 | 11 | oveq2i | ⊢ ( ( ∗ ‘ 𝑆 ) · ( ∗ ‘ 𝑅 ) ) = ( ( ∗ ‘ 𝑆 ) · 𝑅 ) |
| 13 | 9 12 | eqtri | ⊢ ( ∗ ‘ ( 𝑆 · 𝑅 ) ) = ( ( ∗ ‘ 𝑆 ) · 𝑅 ) |
| 14 | 13 | negeqi | ⊢ - ( ∗ ‘ ( 𝑆 · 𝑅 ) ) = - ( ( ∗ ‘ 𝑆 ) · 𝑅 ) |
| 15 | 1 | cjcli | ⊢ ( ∗ ‘ 𝑆 ) ∈ ℂ |
| 16 | 15 6 | mulneg2i | ⊢ ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) = - ( ( ∗ ‘ 𝑆 ) · 𝑅 ) |
| 17 | 14 16 | eqtr4i | ⊢ - ( ∗ ‘ ( 𝑆 · 𝑅 ) ) = ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) |
| 18 | 17 | oveq1i | ⊢ ( - ( ∗ ‘ ( 𝑆 · 𝑅 ) ) · ( 𝐹 ·ih 𝐺 ) ) = ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) |
| 19 | 18 | oveq2i | ⊢ ( ( 𝐹 ·ih 𝐹 ) + ( - ( ∗ ‘ ( 𝑆 · 𝑅 ) ) · ( 𝐹 ·ih 𝐺 ) ) ) = ( ( 𝐹 ·ih 𝐹 ) + ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) ) |
| 20 | 1 6 | mulneg2i | ⊢ ( 𝑆 · - 𝑅 ) = - ( 𝑆 · 𝑅 ) |
| 21 | 20 | eqcomi | ⊢ - ( 𝑆 · 𝑅 ) = ( 𝑆 · - 𝑅 ) |
| 22 | 21 | oveq1i | ⊢ ( - ( 𝑆 · 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) = ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) |
| 23 | 9 | oveq2i | ⊢ ( ( 𝑆 · 𝑅 ) · ( ∗ ‘ ( 𝑆 · 𝑅 ) ) ) = ( ( 𝑆 · 𝑅 ) · ( ( ∗ ‘ 𝑆 ) · ( ∗ ‘ 𝑅 ) ) ) |
| 24 | 6 | cjcli | ⊢ ( ∗ ‘ 𝑅 ) ∈ ℂ |
| 25 | 1 6 15 24 | mul4i | ⊢ ( ( 𝑆 · 𝑅 ) · ( ( ∗ ‘ 𝑆 ) · ( ∗ ‘ 𝑅 ) ) ) = ( ( 𝑆 · ( ∗ ‘ 𝑆 ) ) · ( 𝑅 · ( ∗ ‘ 𝑅 ) ) ) |
| 26 | 5 | oveq1i | ⊢ ( ( abs ‘ 𝑆 ) ↑ 2 ) = ( 1 ↑ 2 ) |
| 27 | 1 | absvalsqi | ⊢ ( ( abs ‘ 𝑆 ) ↑ 2 ) = ( 𝑆 · ( ∗ ‘ 𝑆 ) ) |
| 28 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 29 | 26 27 28 | 3eqtr3i | ⊢ ( 𝑆 · ( ∗ ‘ 𝑆 ) ) = 1 |
| 30 | 11 | oveq2i | ⊢ ( 𝑅 · ( ∗ ‘ 𝑅 ) ) = ( 𝑅 · 𝑅 ) |
| 31 | 29 30 | oveq12i | ⊢ ( ( 𝑆 · ( ∗ ‘ 𝑆 ) ) · ( 𝑅 · ( ∗ ‘ 𝑅 ) ) ) = ( 1 · ( 𝑅 · 𝑅 ) ) |
| 32 | 6 6 | mulcli | ⊢ ( 𝑅 · 𝑅 ) ∈ ℂ |
| 33 | 32 | mullidi | ⊢ ( 1 · ( 𝑅 · 𝑅 ) ) = ( 𝑅 · 𝑅 ) |
| 34 | 31 33 | eqtri | ⊢ ( ( 𝑆 · ( ∗ ‘ 𝑆 ) ) · ( 𝑅 · ( ∗ ‘ 𝑅 ) ) ) = ( 𝑅 · 𝑅 ) |
| 35 | 25 34 | eqtri | ⊢ ( ( 𝑆 · 𝑅 ) · ( ( ∗ ‘ 𝑆 ) · ( ∗ ‘ 𝑅 ) ) ) = ( 𝑅 · 𝑅 ) |
| 36 | 23 35 | eqtri | ⊢ ( ( 𝑆 · 𝑅 ) · ( ∗ ‘ ( 𝑆 · 𝑅 ) ) ) = ( 𝑅 · 𝑅 ) |
| 37 | 6 | sqvali | ⊢ ( 𝑅 ↑ 2 ) = ( 𝑅 · 𝑅 ) |
| 38 | 36 37 | eqtr4i | ⊢ ( ( 𝑆 · 𝑅 ) · ( ∗ ‘ ( 𝑆 · 𝑅 ) ) ) = ( 𝑅 ↑ 2 ) |
| 39 | 38 | oveq1i | ⊢ ( ( ( 𝑆 · 𝑅 ) · ( ∗ ‘ ( 𝑆 · 𝑅 ) ) ) · ( 𝐺 ·ih 𝐺 ) ) = ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) |
| 40 | 22 39 | oveq12i | ⊢ ( ( - ( 𝑆 · 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) + ( ( ( 𝑆 · 𝑅 ) · ( ∗ ‘ ( 𝑆 · 𝑅 ) ) ) · ( 𝐺 ·ih 𝐺 ) ) ) = ( ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) ) |
| 41 | 19 40 | oveq12i | ⊢ ( ( ( 𝐹 ·ih 𝐹 ) + ( - ( ∗ ‘ ( 𝑆 · 𝑅 ) ) · ( 𝐹 ·ih 𝐺 ) ) ) + ( ( - ( 𝑆 · 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) + ( ( ( 𝑆 · 𝑅 ) · ( ∗ ‘ ( 𝑆 · 𝑅 ) ) ) · ( 𝐺 ·ih 𝐺 ) ) ) ) = ( ( ( 𝐹 ·ih 𝐹 ) + ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) ) + ( ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) ) ) |
| 42 | 8 41 | eqtri | ⊢ ( ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ·ih ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ) = ( ( ( 𝐹 ·ih 𝐹 ) + ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) ) + ( ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) ) ) |