This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normalized vector exists in a subspace iff the subspace has a nonzero vector. (Contributed by NM, 9-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | norm1ex.1 | ⊢ 𝐻 ∈ Sℋ | |
| Assertion | norm1exi | ⊢ ( ∃ 𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃ 𝑦 ∈ 𝐻 ( normℎ ‘ 𝑦 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm1ex.1 | ⊢ 𝐻 ∈ Sℋ | |
| 2 | neeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≠ 0ℎ ↔ 𝑧 ≠ 0ℎ ) ) | |
| 3 | 2 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃ 𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ ) |
| 4 | 1 | sheli | ⊢ ( 𝑧 ∈ 𝐻 → 𝑧 ∈ ℋ ) |
| 5 | normcl | ⊢ ( 𝑧 ∈ ℋ → ( normℎ ‘ 𝑧 ) ∈ ℝ ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑧 ∈ 𝐻 → ( normℎ ‘ 𝑧 ) ∈ ℝ ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ ) → ( normℎ ‘ 𝑧 ) ∈ ℝ ) |
| 8 | normne0 | ⊢ ( 𝑧 ∈ ℋ → ( ( normℎ ‘ 𝑧 ) ≠ 0 ↔ 𝑧 ≠ 0ℎ ) ) | |
| 9 | 4 8 | syl | ⊢ ( 𝑧 ∈ 𝐻 → ( ( normℎ ‘ 𝑧 ) ≠ 0 ↔ 𝑧 ≠ 0ℎ ) ) |
| 10 | 9 | biimpar | ⊢ ( ( 𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ ) → ( normℎ ‘ 𝑧 ) ≠ 0 ) |
| 11 | 7 10 | rereccld | ⊢ ( ( 𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝑧 ) ) ∈ ℝ ) |
| 12 | 11 | recnd | ⊢ ( ( 𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ ) → ( 1 / ( normℎ ‘ 𝑧 ) ) ∈ ℂ ) |
| 13 | simpl | ⊢ ( ( 𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ ) → 𝑧 ∈ 𝐻 ) | |
| 14 | shmulcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ ( 1 / ( normℎ ‘ 𝑧 ) ) ∈ ℂ ∧ 𝑧 ∈ 𝐻 ) → ( ( 1 / ( normℎ ‘ 𝑧 ) ) ·ℎ 𝑧 ) ∈ 𝐻 ) | |
| 15 | 1 14 | mp3an1 | ⊢ ( ( ( 1 / ( normℎ ‘ 𝑧 ) ) ∈ ℂ ∧ 𝑧 ∈ 𝐻 ) → ( ( 1 / ( normℎ ‘ 𝑧 ) ) ·ℎ 𝑧 ) ∈ 𝐻 ) |
| 16 | 12 13 15 | syl2anc | ⊢ ( ( 𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ ) → ( ( 1 / ( normℎ ‘ 𝑧 ) ) ·ℎ 𝑧 ) ∈ 𝐻 ) |
| 17 | norm1 | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑧 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑧 ) ) ·ℎ 𝑧 ) ) = 1 ) | |
| 18 | 4 17 | sylan | ⊢ ( ( 𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ ) → ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑧 ) ) ·ℎ 𝑧 ) ) = 1 ) |
| 19 | fveqeq2 | ⊢ ( 𝑦 = ( ( 1 / ( normℎ ‘ 𝑧 ) ) ·ℎ 𝑧 ) → ( ( normℎ ‘ 𝑦 ) = 1 ↔ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑧 ) ) ·ℎ 𝑧 ) ) = 1 ) ) | |
| 20 | 19 | rspcev | ⊢ ( ( ( ( 1 / ( normℎ ‘ 𝑧 ) ) ·ℎ 𝑧 ) ∈ 𝐻 ∧ ( normℎ ‘ ( ( 1 / ( normℎ ‘ 𝑧 ) ) ·ℎ 𝑧 ) ) = 1 ) → ∃ 𝑦 ∈ 𝐻 ( normℎ ‘ 𝑦 ) = 1 ) |
| 21 | 16 18 20 | syl2anc | ⊢ ( ( 𝑧 ∈ 𝐻 ∧ 𝑧 ≠ 0ℎ ) → ∃ 𝑦 ∈ 𝐻 ( normℎ ‘ 𝑦 ) = 1 ) |
| 22 | 21 | rexlimiva | ⊢ ( ∃ 𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ → ∃ 𝑦 ∈ 𝐻 ( normℎ ‘ 𝑦 ) = 1 ) |
| 23 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 24 | 23 | neii | ⊢ ¬ 1 = 0 |
| 25 | eqeq1 | ⊢ ( ( normℎ ‘ 𝑦 ) = 1 → ( ( normℎ ‘ 𝑦 ) = 0 ↔ 1 = 0 ) ) | |
| 26 | 24 25 | mtbiri | ⊢ ( ( normℎ ‘ 𝑦 ) = 1 → ¬ ( normℎ ‘ 𝑦 ) = 0 ) |
| 27 | 1 | sheli | ⊢ ( 𝑦 ∈ 𝐻 → 𝑦 ∈ ℋ ) |
| 28 | norm-i | ⊢ ( 𝑦 ∈ ℋ → ( ( normℎ ‘ 𝑦 ) = 0 ↔ 𝑦 = 0ℎ ) ) | |
| 29 | 27 28 | syl | ⊢ ( 𝑦 ∈ 𝐻 → ( ( normℎ ‘ 𝑦 ) = 0 ↔ 𝑦 = 0ℎ ) ) |
| 30 | 29 | necon3bbid | ⊢ ( 𝑦 ∈ 𝐻 → ( ¬ ( normℎ ‘ 𝑦 ) = 0 ↔ 𝑦 ≠ 0ℎ ) ) |
| 31 | 26 30 | imbitrid | ⊢ ( 𝑦 ∈ 𝐻 → ( ( normℎ ‘ 𝑦 ) = 1 → 𝑦 ≠ 0ℎ ) ) |
| 32 | 31 | reximia | ⊢ ( ∃ 𝑦 ∈ 𝐻 ( normℎ ‘ 𝑦 ) = 1 → ∃ 𝑦 ∈ 𝐻 𝑦 ≠ 0ℎ ) |
| 33 | neeq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ≠ 0ℎ ↔ 𝑧 ≠ 0ℎ ) ) | |
| 34 | 33 | cbvrexvw | ⊢ ( ∃ 𝑦 ∈ 𝐻 𝑦 ≠ 0ℎ ↔ ∃ 𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ ) |
| 35 | 32 34 | sylib | ⊢ ( ∃ 𝑦 ∈ 𝐻 ( normℎ ‘ 𝑦 ) = 1 → ∃ 𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ ) |
| 36 | 22 35 | impbii | ⊢ ( ∃ 𝑧 ∈ 𝐻 𝑧 ≠ 0ℎ ↔ ∃ 𝑦 ∈ 𝐻 ( normℎ ‘ 𝑦 ) = 1 ) |
| 37 | 3 36 | bitri | ⊢ ( ∃ 𝑥 ∈ 𝐻 𝑥 ≠ 0ℎ ↔ ∃ 𝑦 ∈ 𝐻 ( normℎ ‘ 𝑦 ) = 1 ) |