This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any integer strictly between two adjacent squares has an irrational square root. (Contributed by Stefan O'Rear, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nonsq | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ¬ ( √ ‘ 𝐴 ) ∈ ℚ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z | ⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ ) | |
| 2 | 1 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 𝐵 ∈ ℤ ) |
| 3 | simprl | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( 𝐵 ↑ 2 ) < 𝐴 ) | |
| 4 | nn0re | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) | |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 𝐴 ∈ ℝ ) |
| 6 | 5 | recnd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 𝐴 ∈ ℂ ) |
| 7 | 6 | sqsqrtd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
| 8 | 3 7 | breqtrrd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( 𝐵 ↑ 2 ) < ( ( √ ‘ 𝐴 ) ↑ 2 ) ) |
| 9 | nn0re | ⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) | |
| 10 | 9 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 𝐵 ∈ ℝ ) |
| 11 | nn0ge0 | ⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) | |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 0 ≤ 𝐴 ) |
| 13 | 5 12 | resqrtcld | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( √ ‘ 𝐴 ) ∈ ℝ ) |
| 14 | nn0ge0 | ⊢ ( 𝐵 ∈ ℕ0 → 0 ≤ 𝐵 ) | |
| 15 | 14 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 0 ≤ 𝐵 ) |
| 16 | 5 12 | sqrtge0d | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 0 ≤ ( √ ‘ 𝐴 ) ) |
| 17 | 10 13 15 16 | lt2sqd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( 𝐵 < ( √ ‘ 𝐴 ) ↔ ( 𝐵 ↑ 2 ) < ( ( √ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 18 | 8 17 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 𝐵 < ( √ ‘ 𝐴 ) ) |
| 19 | simprr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) | |
| 20 | 7 19 | eqbrtrd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) < ( ( 𝐵 + 1 ) ↑ 2 ) ) |
| 21 | peano2re | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 1 ) ∈ ℝ ) | |
| 22 | 10 21 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( 𝐵 + 1 ) ∈ ℝ ) |
| 23 | peano2nn0 | ⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 + 1 ) ∈ ℕ0 ) | |
| 24 | nn0ge0 | ⊢ ( ( 𝐵 + 1 ) ∈ ℕ0 → 0 ≤ ( 𝐵 + 1 ) ) | |
| 25 | 23 24 | syl | ⊢ ( 𝐵 ∈ ℕ0 → 0 ≤ ( 𝐵 + 1 ) ) |
| 26 | 25 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 0 ≤ ( 𝐵 + 1 ) ) |
| 27 | 13 22 16 26 | lt2sqd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( ( √ ‘ 𝐴 ) < ( 𝐵 + 1 ) ↔ ( ( √ ‘ 𝐴 ) ↑ 2 ) < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) |
| 28 | 20 27 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( √ ‘ 𝐴 ) < ( 𝐵 + 1 ) ) |
| 29 | btwnnz | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐵 < ( √ ‘ 𝐴 ) ∧ ( √ ‘ 𝐴 ) < ( 𝐵 + 1 ) ) → ¬ ( √ ‘ 𝐴 ) ∈ ℤ ) | |
| 30 | 2 18 28 29 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ¬ ( √ ‘ 𝐴 ) ∈ ℤ ) |
| 31 | nn0z | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) | |
| 32 | 31 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → 𝐴 ∈ ℤ ) |
| 33 | zsqrtelqelz | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( √ ‘ 𝐴 ) ∈ ℚ ) → ( √ ‘ 𝐴 ) ∈ ℤ ) | |
| 34 | 33 | ex | ⊢ ( 𝐴 ∈ ℤ → ( ( √ ‘ 𝐴 ) ∈ ℚ → ( √ ‘ 𝐴 ) ∈ ℤ ) ) |
| 35 | 32 34 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ( ( √ ‘ 𝐴 ) ∈ ℚ → ( √ ‘ 𝐴 ) ∈ ℤ ) ) |
| 36 | 30 35 | mtod | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐵 ↑ 2 ) < 𝐴 ∧ 𝐴 < ( ( 𝐵 + 1 ) ↑ 2 ) ) ) → ¬ ( √ ‘ 𝐴 ) ∈ ℚ ) |