This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any integer strictly between two adjacent squares has an irrational square root. (Contributed by Stefan O'Rear, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nonsq | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> -. ( sqrt ` A ) e. QQ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z | |- ( B e. NN0 -> B e. ZZ ) |
|
| 2 | 1 | ad2antlr | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> B e. ZZ ) |
| 3 | simprl | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( B ^ 2 ) < A ) |
|
| 4 | nn0re | |- ( A e. NN0 -> A e. RR ) |
|
| 5 | 4 | ad2antrr | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> A e. RR ) |
| 6 | 5 | recnd | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> A e. CC ) |
| 7 | 6 | sqsqrtd | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( ( sqrt ` A ) ^ 2 ) = A ) |
| 8 | 3 7 | breqtrrd | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( B ^ 2 ) < ( ( sqrt ` A ) ^ 2 ) ) |
| 9 | nn0re | |- ( B e. NN0 -> B e. RR ) |
|
| 10 | 9 | ad2antlr | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> B e. RR ) |
| 11 | nn0ge0 | |- ( A e. NN0 -> 0 <_ A ) |
|
| 12 | 11 | ad2antrr | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> 0 <_ A ) |
| 13 | 5 12 | resqrtcld | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( sqrt ` A ) e. RR ) |
| 14 | nn0ge0 | |- ( B e. NN0 -> 0 <_ B ) |
|
| 15 | 14 | ad2antlr | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> 0 <_ B ) |
| 16 | 5 12 | sqrtge0d | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> 0 <_ ( sqrt ` A ) ) |
| 17 | 10 13 15 16 | lt2sqd | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( B < ( sqrt ` A ) <-> ( B ^ 2 ) < ( ( sqrt ` A ) ^ 2 ) ) ) |
| 18 | 8 17 | mpbird | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> B < ( sqrt ` A ) ) |
| 19 | simprr | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> A < ( ( B + 1 ) ^ 2 ) ) |
|
| 20 | 7 19 | eqbrtrd | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( ( sqrt ` A ) ^ 2 ) < ( ( B + 1 ) ^ 2 ) ) |
| 21 | peano2re | |- ( B e. RR -> ( B + 1 ) e. RR ) |
|
| 22 | 10 21 | syl | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( B + 1 ) e. RR ) |
| 23 | peano2nn0 | |- ( B e. NN0 -> ( B + 1 ) e. NN0 ) |
|
| 24 | nn0ge0 | |- ( ( B + 1 ) e. NN0 -> 0 <_ ( B + 1 ) ) |
|
| 25 | 23 24 | syl | |- ( B e. NN0 -> 0 <_ ( B + 1 ) ) |
| 26 | 25 | ad2antlr | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> 0 <_ ( B + 1 ) ) |
| 27 | 13 22 16 26 | lt2sqd | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( ( sqrt ` A ) < ( B + 1 ) <-> ( ( sqrt ` A ) ^ 2 ) < ( ( B + 1 ) ^ 2 ) ) ) |
| 28 | 20 27 | mpbird | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( sqrt ` A ) < ( B + 1 ) ) |
| 29 | btwnnz | |- ( ( B e. ZZ /\ B < ( sqrt ` A ) /\ ( sqrt ` A ) < ( B + 1 ) ) -> -. ( sqrt ` A ) e. ZZ ) |
|
| 30 | 2 18 28 29 | syl3anc | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> -. ( sqrt ` A ) e. ZZ ) |
| 31 | nn0z | |- ( A e. NN0 -> A e. ZZ ) |
|
| 32 | 31 | ad2antrr | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> A e. ZZ ) |
| 33 | zsqrtelqelz | |- ( ( A e. ZZ /\ ( sqrt ` A ) e. QQ ) -> ( sqrt ` A ) e. ZZ ) |
|
| 34 | 33 | ex | |- ( A e. ZZ -> ( ( sqrt ` A ) e. QQ -> ( sqrt ` A ) e. ZZ ) ) |
| 35 | 32 34 | syl | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> ( ( sqrt ` A ) e. QQ -> ( sqrt ` A ) e. ZZ ) ) |
| 36 | 30 35 | mtod | |- ( ( ( A e. NN0 /\ B e. NN0 ) /\ ( ( B ^ 2 ) < A /\ A < ( ( B + 1 ) ^ 2 ) ) ) -> -. ( sqrt ` A ) e. QQ ) |