This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two vectors belong to the span of one of them iff the other vector also belongs. (Contributed by NM, 1-Nov-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sumspansn | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ↔ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansnsh | ⊢ ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) ∈ Sℋ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) → ( span ‘ { 𝐴 } ) ∈ Sℋ ) |
| 3 | simpr | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) → ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) | |
| 4 | spansnid | ⊢ ( 𝐴 ∈ ℋ → 𝐴 ∈ ( span ‘ { 𝐴 } ) ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) → 𝐴 ∈ ( span ‘ { 𝐴 } ) ) |
| 6 | shsubcl | ⊢ ( ( ( span ‘ { 𝐴 } ) ∈ Sℋ ∧ ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ∧ 𝐴 ∈ ( span ‘ { 𝐴 } ) ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) | |
| 7 | 2 3 5 6 | syl3anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) |
| 8 | 7 | ex | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) ) |
| 10 | hvpncan2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐴 ) = 𝐵 ) | |
| 11 | 10 | eleq1d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ↔ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) ) |
| 12 | 9 11 | sylibd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) → 𝐵 ∈ ( span ‘ { 𝐴 } ) ) ) |
| 13 | shaddcl | ⊢ ( ( ( span ‘ { 𝐴 } ) ∈ Sℋ ∧ 𝐴 ∈ ( span ‘ { 𝐴 } ) ∧ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) → ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) | |
| 14 | 13 | 3expia | ⊢ ( ( ( span ‘ { 𝐴 } ) ∈ Sℋ ∧ 𝐴 ∈ ( span ‘ { 𝐴 } ) ) → ( 𝐵 ∈ ( span ‘ { 𝐴 } ) → ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) ) |
| 15 | 1 4 14 | syl2anc | ⊢ ( 𝐴 ∈ ℋ → ( 𝐵 ∈ ( span ‘ { 𝐴 } ) → ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 ∈ ( span ‘ { 𝐴 } ) → ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) ) |
| 17 | 12 16 | impbid | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ↔ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) ) |