This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The meet of different one-dimensional subspaces is the zero subspace. (Contributed by NM, 1-Nov-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spansnm0.1 | ⊢ 𝐴 ∈ ℋ | |
| spansnm0.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | spansnm0i | ⊢ ( ¬ 𝐴 ∈ ( span ‘ { 𝐵 } ) → ( ( span ‘ { 𝐴 } ) ∩ ( span ‘ { 𝐵 } ) ) = 0ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansnm0.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | spansnm0.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | 2 | spansnchi | ⊢ ( span ‘ { 𝐵 } ) ∈ Cℋ |
| 4 | 3 | chshii | ⊢ ( span ‘ { 𝐵 } ) ∈ Sℋ |
| 5 | elspansn5 | ⊢ ( ( span ‘ { 𝐵 } ) ∈ Sℋ → ( ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ ( span ‘ { 𝐵 } ) ) ∧ ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ∧ 𝑥 ∈ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = 0ℎ ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ ( span ‘ { 𝐵 } ) ) ∧ ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ∧ 𝑥 ∈ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = 0ℎ ) |
| 7 | 1 6 | mpanl1 | ⊢ ( ( ¬ 𝐴 ∈ ( span ‘ { 𝐵 } ) ∧ ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ∧ 𝑥 ∈ ( span ‘ { 𝐵 } ) ) ) → 𝑥 = 0ℎ ) |
| 8 | 7 | ex | ⊢ ( ¬ 𝐴 ∈ ( span ‘ { 𝐵 } ) → ( ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ∧ 𝑥 ∈ ( span ‘ { 𝐵 } ) ) → 𝑥 = 0ℎ ) ) |
| 9 | elin | ⊢ ( 𝑥 ∈ ( ( span ‘ { 𝐴 } ) ∩ ( span ‘ { 𝐵 } ) ) ↔ ( 𝑥 ∈ ( span ‘ { 𝐴 } ) ∧ 𝑥 ∈ ( span ‘ { 𝐵 } ) ) ) | |
| 10 | elch0 | ⊢ ( 𝑥 ∈ 0ℋ ↔ 𝑥 = 0ℎ ) | |
| 11 | 8 9 10 | 3imtr4g | ⊢ ( ¬ 𝐴 ∈ ( span ‘ { 𝐵 } ) → ( 𝑥 ∈ ( ( span ‘ { 𝐴 } ) ∩ ( span ‘ { 𝐵 } ) ) → 𝑥 ∈ 0ℋ ) ) |
| 12 | 11 | ssrdv | ⊢ ( ¬ 𝐴 ∈ ( span ‘ { 𝐵 } ) → ( ( span ‘ { 𝐴 } ) ∩ ( span ‘ { 𝐵 } ) ) ⊆ 0ℋ ) |
| 13 | 1 | spansnchi | ⊢ ( span ‘ { 𝐴 } ) ∈ Cℋ |
| 14 | 13 3 | chincli | ⊢ ( ( span ‘ { 𝐴 } ) ∩ ( span ‘ { 𝐵 } ) ) ∈ Cℋ |
| 15 | 14 | chle0i | ⊢ ( ( ( span ‘ { 𝐴 } ) ∩ ( span ‘ { 𝐵 } ) ) ⊆ 0ℋ ↔ ( ( span ‘ { 𝐴 } ) ∩ ( span ‘ { 𝐵 } ) ) = 0ℋ ) |
| 16 | 12 15 | sylib | ⊢ ( ¬ 𝐴 ∈ ( span ‘ { 𝐵 } ) → ( ( span ‘ { 𝐴 } ) ∩ ( span ‘ { 𝐵 } ) ) = 0ℋ ) |