This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Well-ordering principle: any nonempty set of positive integers has a least element. This version allows x and y to be present in A as long as they are effectively not free. (Contributed by NM, 17-Aug-2001) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nnwof.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| nnwof.2 | ⊢ Ⅎ 𝑦 𝐴 | ||
| Assertion | nnwof | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnwof.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | nnwof.2 | ⊢ Ⅎ 𝑦 𝐴 | |
| 3 | nnwo | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑤 𝐴 | |
| 5 | nfv | ⊢ Ⅎ 𝑥 𝑤 ≤ 𝑣 | |
| 6 | 1 5 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 |
| 7 | nfv | ⊢ Ⅎ 𝑤 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 | |
| 8 | breq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ≤ 𝑣 ↔ 𝑥 ≤ 𝑣 ) ) | |
| 9 | 8 | ralbidv | ⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 ↔ ∀ 𝑣 ∈ 𝐴 𝑥 ≤ 𝑣 ) ) |
| 10 | nfcv | ⊢ Ⅎ 𝑣 𝐴 | |
| 11 | nfv | ⊢ Ⅎ 𝑦 𝑥 ≤ 𝑣 | |
| 12 | nfv | ⊢ Ⅎ 𝑣 𝑥 ≤ 𝑦 | |
| 13 | breq2 | ⊢ ( 𝑣 = 𝑦 → ( 𝑥 ≤ 𝑣 ↔ 𝑥 ≤ 𝑦 ) ) | |
| 14 | 10 2 11 12 13 | cbvralfw | ⊢ ( ∀ 𝑣 ∈ 𝐴 𝑥 ≤ 𝑣 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 15 | 9 14 | bitrdi | ⊢ ( 𝑤 = 𝑥 → ( ∀ 𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 16 | 4 1 6 7 15 | cbvrexfw | ⊢ ( ∃ 𝑤 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 𝑤 ≤ 𝑣 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 17 | 3 16 | sylib | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |