This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Well-ordering principle: any nonempty set of positive integers has a least element. This version allows x and y to be present in A as long as they are effectively not free. (Contributed by NM, 17-Aug-2001) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nnwof.1 | |- F/_ x A |
|
| nnwof.2 | |- F/_ y A |
||
| Assertion | nnwof | |- ( ( A C_ NN /\ A =/= (/) ) -> E. x e. A A. y e. A x <_ y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnwof.1 | |- F/_ x A |
|
| 2 | nnwof.2 | |- F/_ y A |
|
| 3 | nnwo | |- ( ( A C_ NN /\ A =/= (/) ) -> E. w e. A A. v e. A w <_ v ) |
|
| 4 | nfcv | |- F/_ w A |
|
| 5 | nfv | |- F/ x w <_ v |
|
| 6 | 1 5 | nfralw | |- F/ x A. v e. A w <_ v |
| 7 | nfv | |- F/ w A. y e. A x <_ y |
|
| 8 | breq1 | |- ( w = x -> ( w <_ v <-> x <_ v ) ) |
|
| 9 | 8 | ralbidv | |- ( w = x -> ( A. v e. A w <_ v <-> A. v e. A x <_ v ) ) |
| 10 | nfcv | |- F/_ v A |
|
| 11 | nfv | |- F/ y x <_ v |
|
| 12 | nfv | |- F/ v x <_ y |
|
| 13 | breq2 | |- ( v = y -> ( x <_ v <-> x <_ y ) ) |
|
| 14 | 10 2 11 12 13 | cbvralfw | |- ( A. v e. A x <_ v <-> A. y e. A x <_ y ) |
| 15 | 9 14 | bitrdi | |- ( w = x -> ( A. v e. A w <_ v <-> A. y e. A x <_ y ) ) |
| 16 | 4 1 6 7 15 | cbvrexfw | |- ( E. w e. A A. v e. A w <_ v <-> E. x e. A A. y e. A x <_ y ) |
| 17 | 3 16 | sylib | |- ( ( A C_ NN /\ A =/= (/) ) -> E. x e. A A. y e. A x <_ y ) |