This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty class (even if proper) has a nonempty subset. (Contributed by NM, 23-Aug-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnullss | ⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐴 ) | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | 2 | snss | ⊢ ( 𝑦 ∈ 𝐴 ↔ { 𝑦 } ⊆ 𝐴 ) |
| 4 | 2 | snnz | ⊢ { 𝑦 } ≠ ∅ |
| 5 | vsnex | ⊢ { 𝑦 } ∈ V | |
| 6 | sseq1 | ⊢ ( 𝑥 = { 𝑦 } → ( 𝑥 ⊆ 𝐴 ↔ { 𝑦 } ⊆ 𝐴 ) ) | |
| 7 | neeq1 | ⊢ ( 𝑥 = { 𝑦 } → ( 𝑥 ≠ ∅ ↔ { 𝑦 } ≠ ∅ ) ) | |
| 8 | 6 7 | anbi12d | ⊢ ( 𝑥 = { 𝑦 } → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ↔ ( { 𝑦 } ⊆ 𝐴 ∧ { 𝑦 } ≠ ∅ ) ) ) |
| 9 | 5 8 | spcev | ⊢ ( ( { 𝑦 } ⊆ 𝐴 ∧ { 𝑦 } ≠ ∅ ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ) |
| 10 | 4 9 | mpan2 | ⊢ ( { 𝑦 } ⊆ 𝐴 → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ) |
| 11 | 3 10 | sylbi | ⊢ ( 𝑦 ∈ 𝐴 → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ) |
| 12 | 11 | exlimiv | ⊢ ( ∃ 𝑦 𝑦 ∈ 𝐴 → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ) |
| 13 | 1 12 | sylbi | ⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ) |