This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exss | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝑦 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
| 2 | 1 | neeq1i | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ≠ ∅ ) |
| 3 | rabn0 | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) | |
| 4 | n0 | ⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ) | |
| 5 | 2 3 4 | 3bitr3i | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑧 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ) |
| 6 | vex | ⊢ 𝑧 ∈ V | |
| 7 | 6 | snss | ⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ↔ { 𝑧 } ⊆ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ) |
| 8 | ssab2 | ⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ 𝐴 | |
| 9 | sstr2 | ⊢ ( { 𝑧 } ⊆ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } → ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ 𝐴 → { 𝑧 } ⊆ 𝐴 ) ) | |
| 10 | 8 9 | mpi | ⊢ ( { 𝑧 } ⊆ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } → { 𝑧 } ⊆ 𝐴 ) |
| 11 | 7 10 | sylbi | ⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } → { 𝑧 } ⊆ 𝐴 ) |
| 12 | simpr | ⊢ ( ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) → [ 𝑧 / 𝑥 ] 𝜑 ) | |
| 13 | equsb1v | ⊢ [ 𝑧 / 𝑥 ] 𝑥 = 𝑧 | |
| 14 | velsn | ⊢ ( 𝑥 ∈ { 𝑧 } ↔ 𝑥 = 𝑧 ) | |
| 15 | 14 | sbbii | ⊢ ( [ 𝑧 / 𝑥 ] 𝑥 ∈ { 𝑧 } ↔ [ 𝑧 / 𝑥 ] 𝑥 = 𝑧 ) |
| 16 | 13 15 | mpbir | ⊢ [ 𝑧 / 𝑥 ] 𝑥 ∈ { 𝑧 } |
| 17 | 12 16 | jctil | ⊢ ( ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) → ( [ 𝑧 / 𝑥 ] 𝑥 ∈ { 𝑧 } ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 18 | df-clab | ⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ↔ [ 𝑧 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 19 | sban | ⊢ ( [ 𝑧 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 20 | 18 19 | bitri | ⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ↔ ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 21 | df-rab | ⊢ { 𝑥 ∈ { 𝑧 } ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ { 𝑧 } ∧ 𝜑 ) } | |
| 22 | 21 | eleq2i | ⊢ ( 𝑧 ∈ { 𝑥 ∈ { 𝑧 } ∣ 𝜑 } ↔ 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ { 𝑧 } ∧ 𝜑 ) } ) |
| 23 | df-clab | ⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ { 𝑧 } ∧ 𝜑 ) } ↔ [ 𝑧 / 𝑥 ] ( 𝑥 ∈ { 𝑧 } ∧ 𝜑 ) ) | |
| 24 | sban | ⊢ ( [ 𝑧 / 𝑥 ] ( 𝑥 ∈ { 𝑧 } ∧ 𝜑 ) ↔ ( [ 𝑧 / 𝑥 ] 𝑥 ∈ { 𝑧 } ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 25 | 22 23 24 | 3bitri | ⊢ ( 𝑧 ∈ { 𝑥 ∈ { 𝑧 } ∣ 𝜑 } ↔ ( [ 𝑧 / 𝑥 ] 𝑥 ∈ { 𝑧 } ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 26 | 17 20 25 | 3imtr4i | ⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } → 𝑧 ∈ { 𝑥 ∈ { 𝑧 } ∣ 𝜑 } ) |
| 27 | 26 | ne0d | ⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } → { 𝑥 ∈ { 𝑧 } ∣ 𝜑 } ≠ ∅ ) |
| 28 | rabn0 | ⊢ ( { 𝑥 ∈ { 𝑧 } ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 ∈ { 𝑧 } 𝜑 ) | |
| 29 | 27 28 | sylib | ⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } → ∃ 𝑥 ∈ { 𝑧 } 𝜑 ) |
| 30 | vsnex | ⊢ { 𝑧 } ∈ V | |
| 31 | sseq1 | ⊢ ( 𝑦 = { 𝑧 } → ( 𝑦 ⊆ 𝐴 ↔ { 𝑧 } ⊆ 𝐴 ) ) | |
| 32 | rexeq | ⊢ ( 𝑦 = { 𝑧 } → ( ∃ 𝑥 ∈ 𝑦 𝜑 ↔ ∃ 𝑥 ∈ { 𝑧 } 𝜑 ) ) | |
| 33 | 31 32 | anbi12d | ⊢ ( 𝑦 = { 𝑧 } → ( ( 𝑦 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝑦 𝜑 ) ↔ ( { 𝑧 } ⊆ 𝐴 ∧ ∃ 𝑥 ∈ { 𝑧 } 𝜑 ) ) ) |
| 34 | 30 33 | spcev | ⊢ ( ( { 𝑧 } ⊆ 𝐴 ∧ ∃ 𝑥 ∈ { 𝑧 } 𝜑 ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝑦 𝜑 ) ) |
| 35 | 11 29 34 | syl2anc | ⊢ ( 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝑦 𝜑 ) ) |
| 36 | 35 | exlimiv | ⊢ ( ∃ 𝑧 𝑧 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝑦 𝜑 ) ) |
| 37 | 5 36 | sylbi | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝑦 𝜑 ) ) |