This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty class (even if proper) has a nonempty subset. (Contributed by NM, 23-Aug-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnullss | |- ( A =/= (/) -> E. x ( x C_ A /\ x =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | |- ( A =/= (/) <-> E. y y e. A ) |
|
| 2 | vex | |- y e. _V |
|
| 3 | 2 | snss | |- ( y e. A <-> { y } C_ A ) |
| 4 | 2 | snnz | |- { y } =/= (/) |
| 5 | vsnex | |- { y } e. _V |
|
| 6 | sseq1 | |- ( x = { y } -> ( x C_ A <-> { y } C_ A ) ) |
|
| 7 | neeq1 | |- ( x = { y } -> ( x =/= (/) <-> { y } =/= (/) ) ) |
|
| 8 | 6 7 | anbi12d | |- ( x = { y } -> ( ( x C_ A /\ x =/= (/) ) <-> ( { y } C_ A /\ { y } =/= (/) ) ) ) |
| 9 | 5 8 | spcev | |- ( ( { y } C_ A /\ { y } =/= (/) ) -> E. x ( x C_ A /\ x =/= (/) ) ) |
| 10 | 4 9 | mpan2 | |- ( { y } C_ A -> E. x ( x C_ A /\ x =/= (/) ) ) |
| 11 | 3 10 | sylbi | |- ( y e. A -> E. x ( x C_ A /\ x =/= (/) ) ) |
| 12 | 11 | exlimiv | |- ( E. y y e. A -> E. x ( x C_ A /\ x =/= (/) ) ) |
| 13 | 1 12 | sylbi | |- ( A =/= (/) -> E. x ( x C_ A /\ x =/= (/) ) ) |