This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bounded real sequence A ( k ) is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bndndx | ⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) → ∃ 𝑘 ∈ ℕ 𝐴 ≤ 𝑘 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arch | ⊢ ( 𝑥 ∈ ℝ → ∃ 𝑘 ∈ ℕ 𝑥 < 𝑘 ) | |
| 2 | nnre | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) | |
| 3 | lelttr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝑘 ) → 𝐴 < 𝑘 ) ) | |
| 4 | ltle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝐴 < 𝑘 → 𝐴 ≤ 𝑘 ) ) | |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝐴 < 𝑘 → 𝐴 ≤ 𝑘 ) ) |
| 6 | 3 5 | syld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( ( 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝑘 ) → 𝐴 ≤ 𝑘 ) ) |
| 7 | 6 | exp5o | ⊢ ( 𝐴 ∈ ℝ → ( 𝑥 ∈ ℝ → ( 𝑘 ∈ ℝ → ( 𝐴 ≤ 𝑥 → ( 𝑥 < 𝑘 → 𝐴 ≤ 𝑘 ) ) ) ) ) |
| 8 | 7 | com3l | ⊢ ( 𝑥 ∈ ℝ → ( 𝑘 ∈ ℝ → ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 𝑥 → ( 𝑥 < 𝑘 → 𝐴 ≤ 𝑘 ) ) ) ) ) |
| 9 | 8 | imp4b | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) → ( 𝑥 < 𝑘 → 𝐴 ≤ 𝑘 ) ) ) |
| 10 | 9 | com23 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝑥 < 𝑘 → ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) → 𝐴 ≤ 𝑘 ) ) ) |
| 11 | 2 10 | sylan2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( 𝑥 < 𝑘 → ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) → 𝐴 ≤ 𝑘 ) ) ) |
| 12 | 11 | reximdva | ⊢ ( 𝑥 ∈ ℝ → ( ∃ 𝑘 ∈ ℕ 𝑥 < 𝑘 → ∃ 𝑘 ∈ ℕ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) → 𝐴 ≤ 𝑘 ) ) ) |
| 13 | 1 12 | mpd | ⊢ ( 𝑥 ∈ ℝ → ∃ 𝑘 ∈ ℕ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) → 𝐴 ≤ 𝑘 ) ) |
| 14 | r19.35 | ⊢ ( ∃ 𝑘 ∈ ℕ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) → 𝐴 ≤ 𝑘 ) ↔ ( ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) → ∃ 𝑘 ∈ ℕ 𝐴 ≤ 𝑘 ) ) | |
| 15 | 13 14 | sylib | ⊢ ( 𝑥 ∈ ℝ → ( ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) → ∃ 𝑘 ∈ ℕ 𝐴 ≤ 𝑘 ) ) |
| 16 | 15 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) → ∃ 𝑘 ∈ ℕ 𝐴 ≤ 𝑘 ) |