This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnmcan | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anrot | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ↔ ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) ) | |
| 2 | nnmword | ⊢ ( ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( 𝐵 ⊆ 𝐶 ↔ ( 𝐴 ·o 𝐵 ) ⊆ ( 𝐴 ·o 𝐶 ) ) ) | |
| 3 | 1 2 | sylanb | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( 𝐵 ⊆ 𝐶 ↔ ( 𝐴 ·o 𝐵 ) ⊆ ( 𝐴 ·o 𝐶 ) ) ) |
| 4 | 3anrev | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ↔ ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) ) | |
| 5 | nnmword | ⊢ ( ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( 𝐶 ⊆ 𝐵 ↔ ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) | |
| 6 | 4 5 | sylanb | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( 𝐶 ⊆ 𝐵 ↔ ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
| 7 | 3 6 | anbi12d | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ↔ ( ( 𝐴 ·o 𝐵 ) ⊆ ( 𝐴 ·o 𝐶 ) ∧ ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) ) |
| 8 | 7 | bicomd | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( ( ( 𝐴 ·o 𝐵 ) ⊆ ( 𝐴 ·o 𝐶 ) ∧ ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ↔ ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ) ) |
| 9 | eqss | ⊢ ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ ( ( 𝐴 ·o 𝐵 ) ⊆ ( 𝐴 ·o 𝐶 ) ∧ ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) | |
| 10 | eqss | ⊢ ( 𝐵 = 𝐶 ↔ ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ) | |
| 11 | 8 9 10 | 3bitr4g | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |