This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of addition. Proposition 8.4 of TakeutiZaring p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnaordi | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω ) → 𝐴 ∈ ω ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ ω ) |
| 3 | 2 | adantll | ⊢ ( ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ ω ) |
| 4 | nnord | ⊢ ( 𝐵 ∈ ω → Ord 𝐵 ) | |
| 5 | ordsucss | ⊢ ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
| 7 | 6 | ad2antlr | ⊢ ( ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ∈ ω ) → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
| 8 | peano2b | ⊢ ( 𝐴 ∈ ω ↔ suc 𝐴 ∈ ω ) | |
| 9 | oveq2 | ⊢ ( 𝑥 = suc 𝐴 → ( 𝐶 +o 𝑥 ) = ( 𝐶 +o suc 𝐴 ) ) | |
| 10 | 9 | sseq2d | ⊢ ( 𝑥 = suc 𝐴 → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ↔ ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝐴 ) ) ) |
| 11 | 10 | imbi2d | ⊢ ( 𝑥 = suc 𝐴 → ( ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ) ↔ ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝐴 ) ) ) ) |
| 12 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐶 +o 𝑥 ) = ( 𝐶 +o 𝑦 ) ) | |
| 13 | 12 | sseq2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ↔ ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ) ↔ ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) ) ) ) |
| 15 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐶 +o 𝑥 ) = ( 𝐶 +o suc 𝑦 ) ) | |
| 16 | 15 | sseq2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ↔ ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ) ) |
| 17 | 16 | imbi2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ) ↔ ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ) ) ) |
| 18 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐶 +o 𝑥 ) = ( 𝐶 +o 𝐵 ) ) | |
| 19 | 18 | sseq2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ↔ ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑥 ) ) ↔ ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) ) |
| 21 | ssid | ⊢ ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝐴 ) | |
| 22 | 21 | 2a1i | ⊢ ( suc 𝐴 ∈ ω → ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝐴 ) ) ) |
| 23 | sssucid | ⊢ ( 𝐶 +o 𝑦 ) ⊆ suc ( 𝐶 +o 𝑦 ) | |
| 24 | sstr2 | ⊢ ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) → ( ( 𝐶 +o 𝑦 ) ⊆ suc ( 𝐶 +o 𝑦 ) → ( 𝐶 +o suc 𝐴 ) ⊆ suc ( 𝐶 +o 𝑦 ) ) ) | |
| 25 | 23 24 | mpi | ⊢ ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) → ( 𝐶 +o suc 𝐴 ) ⊆ suc ( 𝐶 +o 𝑦 ) ) |
| 26 | nnasuc | ⊢ ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐶 +o suc 𝑦 ) = suc ( 𝐶 +o 𝑦 ) ) | |
| 27 | 26 | ancoms | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐶 +o suc 𝑦 ) = suc ( 𝐶 +o 𝑦 ) ) |
| 28 | 27 | sseq2d | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ↔ ( 𝐶 +o suc 𝐴 ) ⊆ suc ( 𝐶 +o 𝑦 ) ) ) |
| 29 | 25 28 | imbitrrid | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ) ) |
| 30 | 29 | ex | ⊢ ( 𝑦 ∈ ω → ( 𝐶 ∈ ω → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ) ) ) |
| 31 | 30 | ad2antrr | ⊢ ( ( ( 𝑦 ∈ ω ∧ suc 𝐴 ∈ ω ) ∧ suc 𝐴 ⊆ 𝑦 ) → ( 𝐶 ∈ ω → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ) ) ) |
| 32 | 31 | a2d | ⊢ ( ( ( 𝑦 ∈ ω ∧ suc 𝐴 ∈ ω ) ∧ suc 𝐴 ⊆ 𝑦 ) → ( ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝑦 ) ) → ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o suc 𝑦 ) ) ) ) |
| 33 | 11 14 17 20 22 32 | findsg | ⊢ ( ( ( 𝐵 ∈ ω ∧ suc 𝐴 ∈ ω ) ∧ suc 𝐴 ⊆ 𝐵 ) → ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) |
| 34 | 33 | exp31 | ⊢ ( 𝐵 ∈ ω → ( suc 𝐴 ∈ ω → ( suc 𝐴 ⊆ 𝐵 → ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) ) ) |
| 35 | 8 34 | biimtrid | ⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ ω → ( suc 𝐴 ⊆ 𝐵 → ( 𝐶 ∈ ω → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) ) ) |
| 36 | 35 | com4r | ⊢ ( 𝐶 ∈ ω → ( 𝐵 ∈ ω → ( 𝐴 ∈ ω → ( suc 𝐴 ⊆ 𝐵 → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) ) ) |
| 37 | 36 | imp31 | ⊢ ( ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ∈ ω ) → ( suc 𝐴 ⊆ 𝐵 → ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) |
| 38 | nnasuc | ⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐶 +o suc 𝐴 ) = suc ( 𝐶 +o 𝐴 ) ) | |
| 39 | 38 | sseq1d | ⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ↔ suc ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) |
| 40 | ovex | ⊢ ( 𝐶 +o 𝐴 ) ∈ V | |
| 41 | sucssel | ⊢ ( ( 𝐶 +o 𝐴 ) ∈ V → ( suc ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) | |
| 42 | 40 41 | ax-mp | ⊢ ( suc ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) |
| 43 | 39 42 | biimtrdi | ⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |
| 44 | 43 | adantlr | ⊢ ( ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ∈ ω ) → ( ( 𝐶 +o suc 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |
| 45 | 7 37 44 | 3syld | ⊢ ( ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |
| 46 | 45 | imp | ⊢ ( ( ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ∈ ω ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) |
| 47 | 46 | an32s | ⊢ ( ( ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ∈ 𝐵 ) ∧ 𝐴 ∈ ω ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) |
| 48 | 3 47 | mpdan | ⊢ ( ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) |
| 49 | 48 | ex | ⊢ ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |
| 50 | 49 | ancoms | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 +o 𝐴 ) ∈ ( 𝐶 +o 𝐵 ) ) ) |