This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is even iff its square is even. (Contributed by NM, 20-Aug-2001) (Revised by Mario Carneiro, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnesq | |- ( N e. NN -> ( ( N / 2 ) e. NN <-> ( ( N ^ 2 ) / 2 ) e. NN ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 2 | zesq | |- ( N e. ZZ -> ( ( N / 2 ) e. ZZ <-> ( ( N ^ 2 ) / 2 ) e. ZZ ) ) |
|
| 3 | 1 2 | syl | |- ( N e. NN -> ( ( N / 2 ) e. ZZ <-> ( ( N ^ 2 ) / 2 ) e. ZZ ) ) |
| 4 | nnrp | |- ( N e. NN -> N e. RR+ ) |
|
| 5 | 4 | rphalfcld | |- ( N e. NN -> ( N / 2 ) e. RR+ ) |
| 6 | 5 | rpgt0d | |- ( N e. NN -> 0 < ( N / 2 ) ) |
| 7 | nnsqcl | |- ( N e. NN -> ( N ^ 2 ) e. NN ) |
|
| 8 | 7 | nnrpd | |- ( N e. NN -> ( N ^ 2 ) e. RR+ ) |
| 9 | 8 | rphalfcld | |- ( N e. NN -> ( ( N ^ 2 ) / 2 ) e. RR+ ) |
| 10 | 9 | rpgt0d | |- ( N e. NN -> 0 < ( ( N ^ 2 ) / 2 ) ) |
| 11 | 6 10 | 2thd | |- ( N e. NN -> ( 0 < ( N / 2 ) <-> 0 < ( ( N ^ 2 ) / 2 ) ) ) |
| 12 | 3 11 | anbi12d | |- ( N e. NN -> ( ( ( N / 2 ) e. ZZ /\ 0 < ( N / 2 ) ) <-> ( ( ( N ^ 2 ) / 2 ) e. ZZ /\ 0 < ( ( N ^ 2 ) / 2 ) ) ) ) |
| 13 | elnnz | |- ( ( N / 2 ) e. NN <-> ( ( N / 2 ) e. ZZ /\ 0 < ( N / 2 ) ) ) |
|
| 14 | elnnz | |- ( ( ( N ^ 2 ) / 2 ) e. NN <-> ( ( ( N ^ 2 ) / 2 ) e. ZZ /\ 0 < ( ( N ^ 2 ) / 2 ) ) ) |
|
| 15 | 12 13 14 | 3bitr4g | |- ( N e. NN -> ( ( N / 2 ) e. NN <-> ( ( N ^ 2 ) / 2 ) e. NN ) ) |