This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reciprocal of a complex number in terms of real and imaginary components. Remark in Apostol p. 361. (Contributed by NM, 29-Apr-2005) (Proof shortened by Jeff Hankins, 16-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crrecz.1 | ⊢ 𝐴 ∈ ℝ | |
| crrecz.2 | ⊢ 𝐵 ∈ ℝ | ||
| Assertion | crreczi | ⊢ ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) → ( 1 / ( 𝐴 + ( i · 𝐵 ) ) ) = ( ( 𝐴 − ( i · 𝐵 ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crrecz.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | crrecz.2 | ⊢ 𝐵 ∈ ℝ | |
| 3 | 1 | recni | ⊢ 𝐴 ∈ ℂ |
| 4 | 3 | sqcli | ⊢ ( 𝐴 ↑ 2 ) ∈ ℂ |
| 5 | ax-icn | ⊢ i ∈ ℂ | |
| 6 | 2 | recni | ⊢ 𝐵 ∈ ℂ |
| 7 | 5 6 | mulcli | ⊢ ( i · 𝐵 ) ∈ ℂ |
| 8 | 7 | sqcli | ⊢ ( ( i · 𝐵 ) ↑ 2 ) ∈ ℂ |
| 9 | 4 8 | negsubi | ⊢ ( ( 𝐴 ↑ 2 ) + - ( ( i · 𝐵 ) ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) − ( ( i · 𝐵 ) ↑ 2 ) ) |
| 10 | 5 6 | sqmuli | ⊢ ( ( i · 𝐵 ) ↑ 2 ) = ( ( i ↑ 2 ) · ( 𝐵 ↑ 2 ) ) |
| 11 | i2 | ⊢ ( i ↑ 2 ) = - 1 | |
| 12 | 11 | oveq1i | ⊢ ( ( i ↑ 2 ) · ( 𝐵 ↑ 2 ) ) = ( - 1 · ( 𝐵 ↑ 2 ) ) |
| 13 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 14 | 6 | sqcli | ⊢ ( 𝐵 ↑ 2 ) ∈ ℂ |
| 15 | 13 14 | mulneg1i | ⊢ ( - 1 · ( 𝐵 ↑ 2 ) ) = - ( 1 · ( 𝐵 ↑ 2 ) ) |
| 16 | 10 12 15 | 3eqtri | ⊢ ( ( i · 𝐵 ) ↑ 2 ) = - ( 1 · ( 𝐵 ↑ 2 ) ) |
| 17 | 16 | negeqi | ⊢ - ( ( i · 𝐵 ) ↑ 2 ) = - - ( 1 · ( 𝐵 ↑ 2 ) ) |
| 18 | 13 14 | mulcli | ⊢ ( 1 · ( 𝐵 ↑ 2 ) ) ∈ ℂ |
| 19 | 18 | negnegi | ⊢ - - ( 1 · ( 𝐵 ↑ 2 ) ) = ( 1 · ( 𝐵 ↑ 2 ) ) |
| 20 | 14 | mullidi | ⊢ ( 1 · ( 𝐵 ↑ 2 ) ) = ( 𝐵 ↑ 2 ) |
| 21 | 17 19 20 | 3eqtri | ⊢ - ( ( i · 𝐵 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) |
| 22 | 21 | oveq2i | ⊢ ( ( 𝐴 ↑ 2 ) + - ( ( i · 𝐵 ) ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) |
| 23 | 3 7 | subsqi | ⊢ ( ( 𝐴 ↑ 2 ) − ( ( i · 𝐵 ) ↑ 2 ) ) = ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐴 − ( i · 𝐵 ) ) ) |
| 24 | 9 22 23 | 3eqtr3ri | ⊢ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐴 − ( i · 𝐵 ) ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) |
| 25 | 24 | oveq1i | ⊢ ( ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐴 − ( i · 𝐵 ) ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
| 26 | neorian | ⊢ ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) | |
| 27 | sumsqeq0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) ↔ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 0 ) ) | |
| 28 | 1 2 27 | mp2an | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) ↔ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 0 ) |
| 29 | 28 | necon3bbii | ⊢ ( ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ↔ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ≠ 0 ) |
| 30 | 26 29 | bitri | ⊢ ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ≠ 0 ) |
| 31 | 3 7 | addcli | ⊢ ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ |
| 32 | 3 7 | subcli | ⊢ ( 𝐴 − ( i · 𝐵 ) ) ∈ ℂ |
| 33 | 4 14 | addcli | ⊢ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℂ |
| 34 | 31 32 33 | divasszi | ⊢ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ≠ 0 → ( ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐴 − ( i · 𝐵 ) ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) = ( ( 𝐴 + ( i · 𝐵 ) ) · ( ( 𝐴 − ( i · 𝐵 ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) ) |
| 35 | 30 34 | sylbi | ⊢ ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) → ( ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐴 − ( i · 𝐵 ) ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) = ( ( 𝐴 + ( i · 𝐵 ) ) · ( ( 𝐴 − ( i · 𝐵 ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) ) |
| 36 | divid | ⊢ ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ∈ ℂ ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ≠ 0 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) = 1 ) | |
| 37 | 33 36 | mpan | ⊢ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ≠ 0 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) = 1 ) |
| 38 | 30 37 | sylbi | ⊢ ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) = 1 ) |
| 39 | 25 35 38 | 3eqtr3a | ⊢ ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) → ( ( 𝐴 + ( i · 𝐵 ) ) · ( ( 𝐴 − ( i · 𝐵 ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) = 1 ) |
| 40 | 32 33 | divclzi | ⊢ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ≠ 0 → ( ( 𝐴 − ( i · 𝐵 ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ∈ ℂ ) |
| 41 | 30 40 | sylbi | ⊢ ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) → ( ( 𝐴 − ( i · 𝐵 ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ∈ ℂ ) |
| 42 | 31 | a1i | ⊢ ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ) |
| 43 | crne0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ( 𝐴 + ( i · 𝐵 ) ) ≠ 0 ) ) | |
| 44 | 1 2 43 | mp2an | ⊢ ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ( 𝐴 + ( i · 𝐵 ) ) ≠ 0 ) |
| 45 | 44 | biimpi | ⊢ ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) → ( 𝐴 + ( i · 𝐵 ) ) ≠ 0 ) |
| 46 | divmul | ⊢ ( ( 1 ∈ ℂ ∧ ( ( 𝐴 − ( i · 𝐵 ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ∈ ℂ ∧ ( ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ∧ ( 𝐴 + ( i · 𝐵 ) ) ≠ 0 ) ) → ( ( 1 / ( 𝐴 + ( i · 𝐵 ) ) ) = ( ( 𝐴 − ( i · 𝐵 ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ↔ ( ( 𝐴 + ( i · 𝐵 ) ) · ( ( 𝐴 − ( i · 𝐵 ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) = 1 ) ) | |
| 47 | 13 46 | mp3an1 | ⊢ ( ( ( ( 𝐴 − ( i · 𝐵 ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ∈ ℂ ∧ ( ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ∧ ( 𝐴 + ( i · 𝐵 ) ) ≠ 0 ) ) → ( ( 1 / ( 𝐴 + ( i · 𝐵 ) ) ) = ( ( 𝐴 − ( i · 𝐵 ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ↔ ( ( 𝐴 + ( i · 𝐵 ) ) · ( ( 𝐴 − ( i · 𝐵 ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) = 1 ) ) |
| 48 | 41 42 45 47 | syl12anc | ⊢ ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) → ( ( 1 / ( 𝐴 + ( i · 𝐵 ) ) ) = ( ( 𝐴 − ( i · 𝐵 ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ↔ ( ( 𝐴 + ( i · 𝐵 ) ) · ( ( 𝐴 − ( i · 𝐵 ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) = 1 ) ) |
| 49 | 39 48 | mpbird | ⊢ ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) → ( 1 / ( 𝐴 + ( i · 𝐵 ) ) ) = ( ( 𝐴 − ( i · 𝐵 ) ) / ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |