This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering property of addition. (Contributed by NM, 17-Sep-1995) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnaword | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnaord | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐵 ∈ 𝐴 ↔ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) | |
| 2 | 1 | 3com12 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐵 ∈ 𝐴 ↔ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) |
| 3 | 2 | notbid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) |
| 4 | nnord | ⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) | |
| 5 | nnord | ⊢ ( 𝐵 ∈ ω → Ord 𝐵 ) | |
| 6 | ordtri1 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
| 9 | nnacl | ⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐶 +o 𝐴 ) ∈ ω ) | |
| 10 | 9 | ancoms | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐶 +o 𝐴 ) ∈ ω ) |
| 11 | 10 | 3adant2 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐶 +o 𝐴 ) ∈ ω ) |
| 12 | nnacl | ⊢ ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐶 +o 𝐵 ) ∈ ω ) | |
| 13 | 12 | ancoms | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐶 +o 𝐵 ) ∈ ω ) |
| 14 | 13 | 3adant1 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐶 +o 𝐵 ) ∈ ω ) |
| 15 | nnord | ⊢ ( ( 𝐶 +o 𝐴 ) ∈ ω → Ord ( 𝐶 +o 𝐴 ) ) | |
| 16 | nnord | ⊢ ( ( 𝐶 +o 𝐵 ) ∈ ω → Ord ( 𝐶 +o 𝐵 ) ) | |
| 17 | ordtri1 | ⊢ ( ( Ord ( 𝐶 +o 𝐴 ) ∧ Ord ( 𝐶 +o 𝐵 ) ) → ( ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ↔ ¬ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) | |
| 18 | 15 16 17 | syl2an | ⊢ ( ( ( 𝐶 +o 𝐴 ) ∈ ω ∧ ( 𝐶 +o 𝐵 ) ∈ ω ) → ( ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ↔ ¬ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) |
| 19 | 11 14 18 | syl2anc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ↔ ¬ ( 𝐶 +o 𝐵 ) ∈ ( 𝐶 +o 𝐴 ) ) ) |
| 20 | 3 8 19 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐶 +o 𝐴 ) ⊆ ( 𝐶 +o 𝐵 ) ) ) |