This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering property of addition. (Contributed by NM, 17-Sep-1995) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnaword | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( A C_ B <-> ( C +o A ) C_ ( C +o B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnaord | |- ( ( B e. _om /\ A e. _om /\ C e. _om ) -> ( B e. A <-> ( C +o B ) e. ( C +o A ) ) ) |
|
| 2 | 1 | 3com12 | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( B e. A <-> ( C +o B ) e. ( C +o A ) ) ) |
| 3 | 2 | notbid | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( -. B e. A <-> -. ( C +o B ) e. ( C +o A ) ) ) |
| 4 | nnord | |- ( A e. _om -> Ord A ) |
|
| 5 | nnord | |- ( B e. _om -> Ord B ) |
|
| 6 | ordtri1 | |- ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B e. A ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( A e. _om /\ B e. _om ) -> ( A C_ B <-> -. B e. A ) ) |
| 8 | 7 | 3adant3 | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( A C_ B <-> -. B e. A ) ) |
| 9 | nnacl | |- ( ( C e. _om /\ A e. _om ) -> ( C +o A ) e. _om ) |
|
| 10 | 9 | ancoms | |- ( ( A e. _om /\ C e. _om ) -> ( C +o A ) e. _om ) |
| 11 | 10 | 3adant2 | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( C +o A ) e. _om ) |
| 12 | nnacl | |- ( ( C e. _om /\ B e. _om ) -> ( C +o B ) e. _om ) |
|
| 13 | 12 | ancoms | |- ( ( B e. _om /\ C e. _om ) -> ( C +o B ) e. _om ) |
| 14 | 13 | 3adant1 | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( C +o B ) e. _om ) |
| 15 | nnord | |- ( ( C +o A ) e. _om -> Ord ( C +o A ) ) |
|
| 16 | nnord | |- ( ( C +o B ) e. _om -> Ord ( C +o B ) ) |
|
| 17 | ordtri1 | |- ( ( Ord ( C +o A ) /\ Ord ( C +o B ) ) -> ( ( C +o A ) C_ ( C +o B ) <-> -. ( C +o B ) e. ( C +o A ) ) ) |
|
| 18 | 15 16 17 | syl2an | |- ( ( ( C +o A ) e. _om /\ ( C +o B ) e. _om ) -> ( ( C +o A ) C_ ( C +o B ) <-> -. ( C +o B ) e. ( C +o A ) ) ) |
| 19 | 11 14 18 | syl2anc | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( ( C +o A ) C_ ( C +o B ) <-> -. ( C +o B ) e. ( C +o A ) ) ) |
| 20 | 3 8 19 | 3bitr4d | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( A C_ B <-> ( C +o A ) C_ ( C +o B ) ) ) |